


Python Data Analysis 
Cookbook

Over 140 practical recipes to help you make sense of your 
data with ease and build production-ready data apps

Ivan Idris

BIRMINGHAM - MUMBAI



Python Data Analysis Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, without the prior written permission of the publisher, 
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers 
and distributors will be held liable for any damages caused or alleged to be caused directly or 
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies 
and products mentioned in this book by the appropriate use of capitals. However, Packt 
Publishing cannot guarantee the accuracy of this information.

First published: July 2016

Production reference: 1150716

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-228-7

www.packtpub.com

www.packtpub.com




Credits

Author
Ivan Idris

Reviewers
Bill Chambers

Alexey Grigorev

Dr. Vahid Mirjalili

Michele Usuelli

Commissioning Editor
Akram Hussain

Acquisition Editor
Prachi Bisht

Content Development Editor
Rohit Singh

Technical Editor
Vivek Pala

Copy Editor
Pranjali Chury

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat



About the Author

Ivan Idris was born in Bulgaria to Indonesian parents. He moved to the Netherlands and 
graduated in experimental physics. His graduation thesis had a strong emphasis on applied 
computer science. After graduating, he worked for several companies as a software developer, 
data warehouse developer, and QA analyst.

His professional interests are business intelligence, big data, and cloud computing. He enjoys 
writing clean, testable code and interesting technical articles. He is the author of NumPy 
Beginner's Guide, NumPy Cookbook, Learning NumPy, and Python Data Analysis, all by  
Packt Publishing.



About the Reviewers

Bill Chambers is a data scientist from the UC Berkeley School of Information. He's focused 
on building technical systems and performing large-scale data analysis. At Berkeley, he has 
worked with everything from data science with Scala and Apache Spark to creating online 
Python courses for UC Berkeley's master of data science program. Prior to Berkeley, he was 
a business analyst at a software company where he was charged with the task of integrating 
multiple software systems and leading internal analytics and reporting. He contributed as a 
technical reviewer to the book Learning Pandas by Packt Publishing.

Alexey Grigorev is a skilled data scientist and software engineer with more than 5 years  
of professional experience. Currently, he works as a data scientist at Searchmetrics Inc. In  
his day-to-day job, he actively uses R and Python for data cleaning, data analysis, and 
modeling. He has contributed as a technical reviewer to other books on data analysis by  
Packt Publishing, such as Test-Driven Machine Learning and Mastering Data Analysis with R.



Dr. Vahid Mirjalili is a data scientist with a diverse background in engineering, 
mathematics, and computer science. Currently, he is working toward his graduate degree  
in computer science at Michigan State University. With his specialty in data mining, he is  
very interested in predictive modeling and getting insights from data. As a Python developer, 
he likes to contribute to the open source community. He has developed Python packages, 
such as PyClust, for data clustering. Furthermore, he is also focused on making tutorials  
for different directions of data science, which can be found at his Github repository at 
http://github.com/mirjalil/DataScience.

The other books that he has reviewed include Python Machine Learning by Sebastian 
Raschka and Python Machine Learning Cookbook by Parteek Joshi. Furthermore, he  
is currently working on a book focused on big data analysis, covering the algorithms 
specifically suited to analyzing massive datasets.

Michele Usuelli is a data scientist, writer, and R enthusiast specializing in the fields of 
big data and machine learning. He currently works for Microsoft and joined through the 
acquisition of Revolution Analytics, the leading R-based company that builds a big data 
package for R. Michele graduated in mathematical engineering, and before Revolution, he 
worked with a big data start-up and a big publishing company. He is the author of R Machine 
Learning Essentials and Building a Recommendation System with R.

http://github.com/mirjalil/DataScience


www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up  
for a range of free newsletters and receive exclusive discounts and offers on Packt books  
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib




i

Table of Contents
Preface	 vii
Chapter 1: Laying the Foundation for Reproducible Data Analysis	 1

Introduction	 2
Setting up Anaconda	 2
Installing the Data Science Toolbox	 4
Creating a virtual environment with virtualenv and virtualenvwrapper	 6
Sandboxing Python applications with Docker images	 8
Keeping track of package versions and history in IPython Notebook	 10
Configuring IPython	 13
Learning to log for robust error checking	 16
Unit testing your code	 19
Configuring pandas	 22
Configuring matplotlib	 24
Seeding random number generators and NumPy print options	 28
Standardizing reports, code style, and data access	 30

Chapter 2: Creating Attractive Data Visualizations	 35
Introduction	 36
Graphing Anscombe's quartet	 36
Choosing seaborn color palettes	 39
Choosing matplotlib color maps	 42
Interacting with IPython Notebook widgets	 43
Viewing a matrix of scatterplots	 47
Visualizing with d3.js via mpld3	 49
Creating heatmaps	 51
Combining box plots and kernel density plots with violin plots	 54
Visualizing network graphs with hive plots	 55
Displaying geographical maps	 58



ii

Table of Contents

Using ggplot2-like plots	 60
Highlighting data points with influence plots	 62

Chapter 3: Statistical Data Analysis and Probability	 67
Introduction	 68
Fitting data to the exponential distribution	 68
Fitting aggregated data to the gamma distribution	 71
Fitting aggregated counts to the Poisson distribution	 72
Determining bias	 75
Estimating kernel density	 78
Determining confidence intervals for mean, variance, and  
standard deviation	 81
Sampling with probability weights	 83
Exploring extreme values	 87
Correlating variables with Pearson's correlation	 91
Correlating variables with the Spearman rank correlation	 94
Correlating a binary and a continuous variable with the point  
biserial correlation	 97
Evaluating relations between variables with ANOVA	 99

Chapter 4: Dealing with Data and Numerical Issues	 103
Introduction	 103
Clipping and filtering outliers	 104
Winsorizing data	 107
Measuring central tendency of noisy data	 109
Normalizing with the Box-Cox transformation	 112
Transforming data with the power ladder	 114
Transforming data with logarithms	 116
Rebinning data	 118
Applying logit() to transform proportions	 120
Fitting a robust linear model	 122
Taking variance into account with weighted least squares	 125
Using arbitrary precision for optimization	 128
Using arbitrary precision for linear algebra	 131

Chapter 5: Web Mining, Databases, and Big Data	 135
Introduction	 136
Simulating web browsing	 136
Scraping the Web	 139
Dealing with non-ASCII text and HTML entities	 142
Implementing association tables	 144
Setting up database migration scripts	 147



iii

Table of Contents

Adding a table column to an existing table	 148
Adding indices after table creation	 150
Setting up a test web server	 151
Implementing a star schema with fact and dimension tables	 153
Using HDFS	 159
Setting up Spark	 160
Clustering data with Spark	 161

Chapter 6: Signal Processing and Timeseries	 167
Introduction	 167
Spectral analysis with periodograms	 168
Estimating power spectral density with the Welch method	 170
Analyzing peaks	 172
Measuring phase synchronization	 174
Exponential smoothing	 177
Evaluating smoothing	 180
Using the Lomb-Scargle periodogram	 183
Analyzing the frequency spectrum of audio	 185
Analyzing signals with the discrete cosine transform	 188
Block bootstrapping time series data	 191
Moving block bootstrapping time series data	 193
Applying the discrete wavelet transform	 197

Chapter 7: Selecting Stocks with Financial Data Analysis	 201
Introduction	 202
Computing simple and log returns	 202
Ranking stocks with the Sharpe ratio and liquidity	 204
Ranking stocks with the Calmar and Sortino ratios	 206
Analyzing returns statistics	 208
Correlating individual stocks with the broader market	 211
Exploring risk and return	 214
Examining the market with the non-parametric runs test	 216
Testing for random walks	 219
Determining market efficiency with autoregressive models	 221
Creating tables for a stock prices database	 223
Populating the stock prices database	 225
Optimizing an equal weights two-asset portfolio	 230

Chapter 8: Text Mining and Social Network Analysis	 235
Introduction	 235
Creating a categorized corpus	 236
Tokenizing news articles in sentences and words	 239



iv

Table of Contents

Stemming, lemmatizing, filtering, and TF-IDF scores	 240
Recognizing named entities	 244
Extracting topics with non-negative matrix factorization	 246
Implementing a basic terms database	 248
Computing social network density	 252
Calculating social network closeness centrality	 254
Determining the betweenness centrality	 255
Estimating the average clustering coefficient	 257
Calculating the assortativity coefficient of a graph	 258
Getting the clique number of a graph	 259
Creating a document graph with cosine similarity	 261

Chapter 9: Ensemble Learning and Dimensionality Reduction	 265
Introduction	 266
Recursively eliminating features	 266
Applying principal component analysis for dimension reduction	 269
Applying linear discriminant analysis for dimension reduction	 271
Stacking and majority voting for multiple models	 272
Learning with random forests	 276
Fitting noisy data with the RANSAC algorithm	 279
Bagging to improve results	 283
Boosting for better learning	 286
Nesting cross-validation	 289
Reusing models with joblib	 292
Hierarchically clustering data	 294
Taking a Theano tour	 296

Chapter 10: Evaluating Classifiers, Regressors, and Clusters	 299
Introduction	 300
Getting classification straight with the confusion matrix	 300
Computing precision, recall, and F1-score	 303
Examining a receiver operating characteristic and the area under a curve	 306
Visualizing the goodness of fit	 309
Computing MSE and median absolute error	 310
Evaluating clusters with the mean silhouette coefficient	 313
Comparing results with a dummy classifier	 316
Determining MAPE and MPE	 319
Comparing with a dummy regressor	 321
Calculating the mean absolute error and the residual sum of squares	 324
Examining the kappa of classification	 326
Taking a look at the Matthews correlation coefficient	 329



v

Table of Contents

Chapter 11: Analyzing Images	 333
Introduction	 333
Setting up OpenCV	 334
Applying Scale-Invariant Feature Transform (SIFT)	 337
Detecting features with SURF	 339
Quantizing colors	 341
Denoising images	 343
Extracting patches from an image	 345
Detecting faces with Haar cascades	 348
Searching for bright stars	 351
Extracting metadata from images	 355
Extracting texture features from images	 357
Applying hierarchical clustering on images	 360
Segmenting images with spectral clustering	 361

Chapter 12: Parallelism and Performance	 365
Introduction	 365
Just-in-time compiling with Numba	 367
Speeding up numerical expressions with Numexpr	 369
Running multiple threads with the threading module	 370
Launching multiple tasks with the concurrent.futures module	 374
Accessing resources asynchronously with the asyncio module	 377
Distributed processing with execnet	 380
Profiling memory usage	 384
Calculating the mean, variance, skewness, and kurtosis on the fly	 385
Caching with a least recently used cache	 390
Caching HTTP requests	 393
Streaming counting with the Count-min sketch	 395
Harnessing the power of the GPU with OpenCL	 398

Appendix A: Glossary	 401
Appendix B: Function Reference	 407

IPython	 407
Matplotlib	 408
NumPy	 409
pandas	 410
Scikit-learn	 411
SciPy	 412
Seaborn	 412
Statsmodels	 413



vi

Table of Contents

Appendix C: Online Resources	 415
IPython notebooks and open data	 415
Mathematics and statistics	 416

Appendix D: Tips and Tricks for Command-Line and  
Miscellaneous Tools	 419

IPython notebooks	 419
Command-line tools	 420
The alias command	 420
Command-line history	 421
Reproducible sessions	 421
Docker tips	 422

Index	 425



vii

Preface
"Data analysis is Python's killer app"

                                                 —Unknown

This book is the follow-up to Python Data Analysis. The obvious question is, "what does this 
new book add?" as Python Data Analysis is pretty great (or so I like to believe) already. This 
book, Python Data Analysis Cookbook, is targeted at slightly more experienced Pythonistas. 
A year has passed, so we are using newer versions of software and software libraries that 
I didn't cover in Python Data Analysis. Also, I've had time to rethink and research, and as a 
result I decided the following:

ff I need to have a toolbox in order to make my life easier and increase reproducibility. 
I called the toolbox dautil and made it available via PyPi (which can be installed with 
pip/easy_install). 

ff My soul-searching exercise led me to believe that I need to make it easier to obtain 
and install the required software. I published a Docker container (pydacbk) with 
some of the software we need via DockerHub. You can read more about the setup 
in Chapter 1, Laying the Foundation for Reproducible Data Analysis, and the online 
chapter. The Docker container is not ideal because it grew quite large, so I had to 
make some tough decisions. Since the container is not really part of the book, I 
think it will be appropriate if you contact me directly if you have any issues. However, 
please keep in mind that I can't change the image drastically.

ff This book uses the IPython Notebook, which has become a standard tool for analysis. 
I have given some related tips in the online chapter and other books I have written.

ff I am using Python 3 with very few exceptions because Python 2 will not be 
maintained after 2020.
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Why do you need this book?
Some people will tell you that you don't need books, just get yourself an interesting project 
and figure out the rest as you go along. Although there are plenty of resources out there, this 
may be a very frustrating road. If you want to make a delicious soup, for example, you can of 
course ask friends and family, search the Internet, or watch cooking shows. However, your 
friends and family are not available full time for you and the quality of Internet content varies. 
And in my humble opinion, Packt Publishing, the reviewers, and I have spent so much time 
and energy on this book, that I will be surprised if you don't get any value out of it.

Data analysis, data science, big data – what 
is the big deal?

You probably have seen Venn diagrams depicting data science as the intersection of 
mathematics/statistics, computer science, and domain expertise. Data analysis is timeless 
and was there before data science and even before computer science. You could do data 
analysis with a pen and paper and, in more modern times, with a pocket calculator.

Data analysis has many aspects, with goals such as making decisions or coming up with new 
hypotheses and questions. The hype, status, and financial rewards surrounding data science 
and big data remind me of the time when datawarehousing and business intelligence were 
the buzz words. The ultimate goal of business intelligence and datawarehousing was to build 
dashboards for management. This involved a lot of politics and organizational aspects, but 
on the technical side, it was mostly about databases. Data science, on the other hand, is not 
database-centric and leans heavily on machine learning. Machine learning techniques have 
become necessary because of the bigger volumes of data. The data growth is caused by the 
growth of the world population and the rise of new technologies, such as social media and 
mobile devices. The data growth is, in fact, probably the only trend that we can be sure of 
continuing. The difference between constructing dashboards and applying machine learning  
is analogous to the way search engines evolved.

Search engines (if you can call them that) were initially nothing more than well-organized 
collections of links created manually. Eventually, the automated approach won. Since, in time, 
more data will be created (and not destroyed), we can expect an increase in automated  
data analysis.
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A brief of history of data analysis with 
Python

The history of the various Python software libraries is quite interesting. I am not a historian, so 
the following notes are written from my own perspective:

ff 1989: Guido van Rossum implements the very first version of Python at the CWI in 
the Netherlands as a Christmas "hobby" project.

ff 1995: Jim Hugunin creates Numeric—the predecessor to NumPy.

ff 1999: Pearu Peterson wrote f2py as a bridge between Fortran and Python.

ff 2000: Python 2.0 is released.

ff 2001: The SciPy library is released. Also, Numarray, a competing library of Numeric is 
created. Fernando Perez releases IPython, which starts out as an "afternoon hack". 
NLTK is released as a research project.

ff 2002: John Hunter creates the Matplotlib library.

ff 2005: NumPy is released by Travis Oliphant. NumPy, initially, is Numeric extended 
with features inspired by Numarray.

ff 2006: NumPy 1.0 is released. The first version of SQLAlchemy is released.

ff 2007: The scikit-learn project is initiated as a Google Summer of Code project by 
David Cournapeau. Cython was forked from Pyrex. Cython is later intensively used in 
pandas and scikit-learn to improve performance.

ff 2008: Wes McKinney starts working on pandas. Python 3.0 is released.

ff 2011: The IPython 0.12 release introduces the IPython notebook. Packt Publishing 
releases NumPy 1.5 Beginner's Guide.

ff 2012: Packt Publishing releases NumPy Cookbook.

ff 2013: Packt Publishing releases NumPy Beginner's Guide, Second Edition.

ff 2014: Fernando Perez announces Project Jupyter, which aims to make a language-
agnostic notebook. Packt Publishing releases Learning NumPy Array and Python  
Data Analysis.

ff 2015: Packt Publishing releases NumPy Beginner's Guide, Third Edition and NumPy 
Cookbook, Second Edition.
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A conjecture about the future
The future is a bright place, where an incredible amount of data lives in the Cloud and 
software runs on any imaginable device with an intuitive customizable interface. (I know 
young people who can't stop talking about how awesome their phone is and how one day we 
will all be programming on tablets by dragging and dropping). It seems there is a certain angst 
in the Python community about not being relevant in the future. Of course, the more you have 
invested in Python, the more it matters.

To figure out what to do, we need to know what makes Python special. A school of thought 
claims that Python is a glue language gluing C, Fortran, R, Java, and other languages; 
therefore, we just need better glue. This probably also means "borrowing" features from other 
languages. Personally, I like the way Python works, its flexible nature, its data structures, 
and the fact that it has so many libraries and features. I think the future is in more delicious 
syntactic sugar and just-in-time compilers. Somehow we should be able to continue writing 
Python code, which automatically is converted for us in concurrent (machine) code. Unseen 
machinery under the hood manages lower level details and sends data and instructions to 
CPUs, GPUs, or the Cloud. The code should be able to easily communicate with whatever 
storage backend we are using. Ideally, all of this magic will be just as convenient as automatic 
garbage collection. It may sound like an impossible "click of a button" dream, but I think it is 
worth pursuing.

What this book covers
Chapter 1, Laying the Foundation for Reproducible Data Analysis, is a pretty important 
chapter, and I recommend that you do not skip it. It explains Anaconda, Docker, unit testing, 
logging, and other essential elements of reproducible data analysis.

Chapter 2, Creating Attractive Data Visualizations, demonstrates how to visualize data and 
mentions frequently encountered pitfalls.

Chapter 3, Statistical Data Analysis and Probability, discusses statistical probability 
distributions and correlation between two variables.

Chapter 4, Dealing with Data and Numerical Issues, is about outliers and other common data 
issues. Data is almost never perfect, so a large portion of the analysis effort goes into dealing 
with data imperfections.

Chapter 5, Web Mining, Databases, and Big Data, is light on mathematics, but more focused 
on technical topics, such as databases, web scraping, and big data.

Chapter 6, Signal Processing and Timeseries, is about time series data, which is abundant 
and requires special techniques. Usually, we are interested in trends and seasonality  
or periodicity.
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Chapter 7, Selecting Stocks with Financial Data Analysis, focuses on stock investing because 
stock price data is abundant. This is the only chapter on finance and the content should be  
at least partially relevant if stocks don't interest you.

Chapter 8, Text Mining and Social Network Analysis, helps you cope with the floods of textual 
and social media information.

Chapter 9, Ensemble Learning and Dimensionality Reduction, covers ensemble learning, 
classification and regression algorithms, as well as hierarchical clustering.

Chapter 10, Evaluating Classifiers, Regressors, and Clusters, evaluates the classifiers  
and regressors from Chapter 9, Ensemble Learning and Dimensionality Reduction, the 
preceding chapter.

Chapter 11, Analyzing Images, uses the OpenCV library quite a lot to analyze images.

Chapter 12, Parallelism and Performance, is about software performance and I discuss 
various options to improve performance, including caching and just-in-time compilers.

Appendix A, Glossary, is a brief glossary of technical concepts used throughout the book.  
The goal is to have a reference that is easy to look up.

Appendix B, Function Reference, is a short reference of functions meant as an extra aid in 
case you are temporarily unable to look up documentation.

Appendix C, Online Resources, lists resources including presentations, links to 
documentation, and freely available IPython notebooks and data. This appendix is available 
as an online chapter.

Appendix D, Tips and Tricks for Command-Line and Miscellaneous Tools, in this book we  
use various tools such as the IPython notebook, Docker, and Unix shell commands. I give  
a short list of tips that is not meant to be exhaustive. This appendix is also available as  
online chapter.

What you need for this book
First, you need a Python 3 distribution. I recommend the full Anaconda distribution as it 
comes with the majority of the software we need. I tested the code with Python 3.4 and  
the following packages:

ff joblib 0.8.4

ff IPython 3.2.1

ff NetworkX 1.9.1

ff NLTK 3.0.2
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ff Numexpr 2.3.1

ff pandas 0.16.2

ff SciPy 0.16.0 

ff seaborn 0.6.0

ff sqlalchemy 0.9.9

ff statsmodels 0.6.1

ff matplotlib 1.5.0

ff NumPy 1.10.1

ff scikit-learn 0.17

ff dautil 0.0.1a29

For some recipes, you need to install extra software, but this is explained whenever the 
software is required.

Who this book is for
This book is hands-on and low on theory. You should have better than beginner Python 
knowledge and have some knowledge of linear algebra, calculus, machine learning and 
statistics. Ideally, you would have read Python Data Analysis, but this is not a requirement.  
I also recommend the following books:

ff Building Machine Learning Systems with Python by Willi Richert and Luis Pedro 
Coelho, 2013

ff Learning NumPy Array by Ivan Idris, 2014

ff Learning scikit-learn: Machine Learning in Python by Guillermo Moncecchi, 2013

ff Learning SciPy for Numerical and Scientific Computing by Francisco J. Blanco-Silva, 
2013

ff Matplotlib for Python Developers by Sandro Tosi, 2009

ff NumPy Beginner's Guide - Third Edition by Ivan Idris, 2015

ff NumPy Cookbook – Second Edition by Ivan Idris, 2015

ff Parallel Programming with Python by Jan Palach, 2014

ff Python Data Visualization Cookbook by Igor Milovanović, 2013

ff Python for Finance by Yuxing Yan, 2014

ff Python Text Processing with NLTK 2.0 Cookbook by Jacob Perkins, 2010
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Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it, 
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or 
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader 
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of 
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Plot the  
data and corresponding linear fits with the Seaborn lmplot() function."
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A block of code is set as follows:

population = dawb.download(indicator=[dawb.get_name('pop_grow'), dawb.
get_name('gdp_pcap'),
                                    dawb.get_name('primary_
education')],
                         country=countries['iso2c'], start=2014, 
end=2014)

population = dawb.rename_columns(population)

When we wish to draw your attention to a particular part of a code block, the relevant lines or 
items are set in bold:

plt.figure()
plt.title('Rainy Weather vs Wind Speed')
categorical = df
categorical['RAIN'] = categorical['RAIN'] > 0
ax = sns.violinplot(x="RAIN", y="WIND_SPEED",
                         data=categorical)

Any command-line input or output is written as follows:

$ conda install -c scitools cartopy

New terms and important words are shown in bold. Words that you see on the screen, for 
example, in menus or dialog boxes, appear in the text like this: "In the next screenshot, the 
Day of year 31 text comes from the tooltip:"

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or disliked. Reader feedback is important for us as it helps us  
develop titles that you will really get the most out of.
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To send us general feedback, simply e-mail feedback@packtpub.com, and mention the 
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://
www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.

2.	 Hover the mouse pointer on the SUPPORT tab at the top.

3.	 Click on Code Downloads & Errata.

4.	 Enter the name of the book in the Search box.

5.	 Select the book for which you're looking to download the code files.

6.	 Choose from the drop-down menu where you purchased this book from.

7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the 
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/PythonDataAnalysisCookbook. We also have other code 
bundles from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/PythonDataAnalysisCookbook
https://github.com/PacktPublishing/PythonDataAnalysisCookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you could report this to us. By doing so, you can save other readers 
from frustration and help us improve subsequent versions of this book. If you find any errata, 
please report them by visiting http://www.packtpub.com/submit-errata, selecting 
your book, clicking on the Errata Submission Form link, and entering the details of your 
errata. Once your errata are verified, your submission will be accepted and the errata will  
be uploaded to our website or added to any list of existing errata under the Errata section  
of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At 
Packt, we take the protection of our copyright and licenses very seriously. If you come across 
any illegal copies of our works in any form on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable 
content.

Questions
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Laying the Foundation 

for Reproducible  
Data Analysis

In this chapter, we will cover the following recipes:

ff Setting up Anaconda

ff Installing the Data Science Toolbox

ff Creating a virtual environment with virtualenv and virtualenvwrapper

ff Sandboxing Python applications with Docker images

ff Keeping track of package versions and history in IPython Notebooks

ff Configuring IPython

ff Learning to log for robust error checking

ff Unit testing your code

ff Configuring pandas

ff Configuring matplotlib

ff Seeding random number generators and NumPy print options

ff Standardizing reports, code style, and data access
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Introduction
Reproducible data analysis is a cornerstone of good science. In today's rapidly evolving world 
of science and technology, reproducibility is a hot topic. Reproducibility is about lowering 
barriers for other people. It may seem strange or unnecessary, but reproducible analysis is 
essential to get your work acknowledged by others. If a lot of people confirm your results, 
it will have a positive effect on your career. However, reproducible analysis is hard. It has 
important economic consequences, as you can read in Freedman LP, Cockburn IM, Simcoe TS 
(2015) The Economics of Reproducibility in Preclinical Research. PLoS Biol 13(6): e1002165. 
doi:10.1371/journal.pbio.1002165.

So reproducibility is important for society and for you, but how does it apply to Python users? 
Well, we want to lower barriers for others by:

ff Giving information about the software and hardware we used, including versions.

ff Sharing virtual environments.

ff Logging program behavior.

ff Unit testing the code. This also serves as documentation of sorts.

ff Sharing configuration files.

ff Seeding random generators and making sure program behavior is as deterministic  
as possible.

ff Standardizing reporting, data access, and code style.

I created the dautil package for this book, which you can install with pip or from the source 
archive provided in this book's code bundle. If you are in a hurry, run $ python install_
ch1.py to install most of the software for this chapter, including dautil. I created a test 
Docker image, which you can use if you don't want to install anything except Docker (see the 
recipe, Sandboxing Python applications with Docker images).

Setting up Anaconda
Anaconda is a free Python distribution for data analysis and scientific computing. It has its 
own package manager, conda. The distribution includes more than 200 Python packages, 
which makes it very convenient. For casual users, the Miniconda distribution may be the 
better choice. Miniconda contains the conda package manager and Python. The technical 
editors use Anaconda, and so do I. But don't worry, I will describe in this book alternative 
installation instructions for readers who are not using Anaconda. In this recipe, we will install 
Anaconda and Miniconda and create a virtual environment.
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Getting ready
The procedures to install Anaconda and Miniconda are similar. Obviously, Anaconda requires 
more disk space. Follow the instructions on the Anaconda website at http://conda.
pydata.org/docs/install/quick.html (retrieved Mar 2016). First, you have to 
download the appropriate installer for your operating system and Python version. Sometimes, 
you can choose between a GUI and a command-line installer. I used the Python 3.4 installer, 
although my system Python version is v2.7. This is possible because Anaconda comes with 
its own Python. On my machine, the Anaconda installer created an anaconda directory in my 
home directory and required about 900 MB. The Miniconda installer installs a miniconda 
directory in your home directory.

How to do it...
1.	 Now that Anaconda or Miniconda is installed, list the packages with the following 

command:
$ conda list

2.	 For reproducibility, it is good to know that we can export packages:
$ conda list --export

3.	 The preceding command prints packages and versions on the screen, which you can 
save in a file. You can install these packages with the following command:
$ conda create -n ch1env --file <export file>

This command also creates an environment named ch1env.

4.	 The following command creates a simple testenv environment:
$ conda create --name testenv python=3

5.	 On Linux and Mac OS X, switch to this environment with the following command:
$ source activate testenv

6.	 On Windows, we don't need source. The syntax to switch back is similar:
$ [source] deactivate

7.	 The following command prints export information for the environment in the YAML 
(explained in the following section) format:
$ conda env export -n testenv

8.	 To remove the environment, type the following (note that even after removing, the 
name of the environment still exists in ~/.conda/environments.txt):
$ conda remove -n testenv --all

asifa
Note
source deactivate

http://conda.pydata.org/docs/install/quick.html
http://conda.pydata.org/docs/install/quick.html
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9.	 Search for a package as follows:
$ conda search numpy

In this example, we searched for the NumPy package. If NumPy is already present, 
Anaconda shows an asterisk in the output at the corresponding entry.

10.	 Update the distribution as follows:
$ conda update conda

There's more...
The .condarc configuration file follows the YAML syntax.

YAML is a human-readable configuration file format with the extension 
.yaml or .yml. YAML was initially released in 2011, with the latest 
release in 2009. The YAML homepage is at http://yaml.org/ 
(retrieved July 2015).
You can find a sample configuration file at http://conda.pydata.
org/docs/install/sample-condarc.html (retrieved July 2015). 
The related documentation is at http://conda.pydata.org/
docs/install/config.html (retrieved July 2015).

See also
ff Martins, L. Felipe (November 2014). IPython Notebook Essentials (1st Edition.). Packt 

Publishing. p. 190. ISBN 1783988347

ff The conda user cheat sheet at http://conda.pydata.org/docs/_downloads/
conda-cheatsheet.pdf (retrieved July 2015)

Installing the Data Science Toolbox
The Data Science Toolbox (DST) is a virtual environment based on Ubuntu for data analysis 
using Python and R. Since DST is a virtual environment, we can install it on various operating 
systems. We will install DST locally, which requires VirtualBox and Vagrant. VirtualBox is a 
virtual machine application originally created by Innotek GmbH in 2007. Vagrant is a wrapper 
around virtual machine applications such as VirtualBox created by Mitchell Hashimoto.

http://yaml.org/
http://conda.pydata.org/docs/install/sample-condarc.html
http://conda.pydata.org/docs/install/sample-condarc.html
http://conda.pydata.org/docs/install/config.html
http://conda.pydata.org/docs/install/config.html
http://conda.pydata.org/docs/_downloads/conda-cheatsheet.pdf
http://conda.pydata.org/docs/_downloads/conda-cheatsheet.pdf
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Getting ready
You need to have in the order of 2 to 3 GB free for VirtualBox, Vagrant, and DST itself. This 
may vary by operating system.

How to do it...
Installing DST requires the following steps:

1.	 Install VirtualBox by downloading an installer for your operating system and 
architecture from https://www.virtualbox.org/wiki/Downloads (retrieved 
July 2015) and running it. I installed VirtualBox 4.3.28-100309 myself, but you can 
just install whatever the most recent VirtualBox version at the time is.

2.	 Install Vagrant by downloading an installer for your operating system and architecture 
from https://www.vagrantup.com/downloads.html (retrieved July 2015). I 
installed Vagrant 1.7.2 and again you can install a more recent version if available.

3.	 Create a directory to hold the DST and navigate to it with a terminal. Run the  
following command:
$ vagrant init data-science-toolbox/dst

$ vagrant up

The first command creates a VagrantFile configuration file. Most of the content 
is commented out, but the file does contain links to documentation that might be 
useful. The second command creates the DST and initiates a download that could 
take a couple of minutes.

4.	 Connect to the virtual environment as follows (on Windows use putty):
$ vagrant ssh

5.	 View the preinstalled Python packages with the following command:
vagrant@data-science-toolbox:~$ pip freeze

The list is quite long; in my case it contained 32 packages. The DST Python version  
as of July 2015 was 2.7.6.

6.	 When you are done with the DST, log out and suspend (you can also halt it 
completely) the VM:
vagrant@data-science-toolbox:~$ logout

Connection to 127.0.0.1 closed.

$ vagrant suspend

==> default: Saving VM state and suspending execution...

aswathyp
Rectangle

https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads.html
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How it works...
Virtual machines (VMs) emulate computers in software. VirtualBox is an application that 
creates and manages VMs. VirtualBox stores its VMs in your home folder, and this particular 
VM takes about 2.2 GB of storage.

Ubuntu is an open source Linux operating system, and we are allowed by its license to create 
virtual machines. Ubuntu has several versions; we can get more info with the lsb_release 
command:

vagrant@data-science-toolbox:~$ lsb_release -a

No LSB modules are available.

Distributor ID:    Ubuntu

Description:    Ubuntu 14.04 LTS

Release:    14.04

Codename:    trusty

Vagrant used to only work with VirtualBox, but currently it also supports VMware, KVM, 
Docker, and Amazon EC2. Vagrant calls virtual machines boxes. Some of these boxes are 
available for everyone at http://www.vagrantbox.es/ (retrieved July 2015).

See also
ff Run Ubuntu Linux Within Windows Using VirtualBox at http://linux.about.

com/od/howtos/ss/Run-Ubuntu-Linux-Within-Windows-Using-
VirtualBox.htm#step11 (retrieved July 2015)

ff VirtualBox manual chapter 10 Technical Information at https://www.
virtualbox.org/manual/ch10.html (retrieved July 2015)

Creating a virtual environment with 
virtualenv and virtualenvwrapper

Virtual environments provide dependency isolation for small projects. They also keep  
your site-packages directory small. Since Python 3.3, virtualenv has been part of  
the standard Python distribution. The virtualenvwrapper Python project has some extra  
convenient features for virtual environment management. I will demonstrate virtualenv  
and virtualenvwrapper functionality in this recipe.

http://www.vagrantbox.es/
http://linux.about.com/od/howtos/ss/Run-Ubuntu-Linux-Within-Windows-Using-VirtualBox.htm#step11
http://linux.about.com/od/howtos/ss/Run-Ubuntu-Linux-Within-Windows-Using-VirtualBox.htm#step11
http://linux.about.com/od/howtos/ss/Run-Ubuntu-Linux-Within-Windows-Using-VirtualBox.htm#step11
https://www.virtualbox.org/manual/ch10.html
https://www.virtualbox.org/manual/ch10.html


Chapter 1

7

Getting ready
You need Python 3.3 or later. You can install virtualenvwrapper with pip command  
as follows:

$ [sudo] pip install virtualenvwrapper

On Linux and Mac, it's necessary to do some extra work—specifying a directory for the virtual 
environments and sourcing a script:

$ export WORKON_HOME=/tmp/envs

$ source /usr/local/bin/virtualenvwrapper.sh

Windows has a separate version, which you can install with the following command:

$ pip install virtualenvwrapper-win

How to do it...
1.	 Create a virtual environment for a given directory with the pyvenv script part of your 

Python distribution:
$ pyvenv /tmp/testenv

$ ls

bin        include        lib        pyvenv.cfg

2.	 In this example, we created a testenv directory in the /tmp directory with several 
directories and a configuration file. The configuration file pyvenv.cfg contains the 
Python version and the home directory of the Python distribution.

3.	 Activate the environment on Linux or Mac by sourcing the activate script, for 
example, with the following command:
$ source bin/activate

On Windows, use the activate.bat file.

4.	 You can now install packages in this environment in isolation. When you are done 
with the environment, switch back on Linux or Mac with the following command:
$ deactivate

On Windows, use the deactivate.bat file.

5.	 Alternatively, you could use virtualenvwrapper. Create and switch to a virtual 
environment with the following command:
vagrant@data-science-toolbox:~$ mkvirtualenv env2
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6.	 Deactivate the environment with the deactivate command:
(env2)vagrant@data-science-toolbox:~$ deactivate

7.	 Delete the environment with the rmvirtualenv command:

vagrant@data-science-toolbox:~$ rmvirtualenv env2

See also
ff The Python standard library documentation for virtual environments at  

https://docs.python.org/3/library/venv.html#creating-virtual-
environments (retrieved July 2015)

ff The virtualenvwrapper documentation is at https://virtualenvwrapper.
readthedocs.org/en/latest/index.html (retrieved July 2015)

Sandboxing Python applications with  
Docker images

Docker uses Linux kernel features to provide an extra virtualization layer. Docker was created 
in 2013 by Solomon Hykes. Boot2Docker allows us to install Docker on Windows and Mac OS 
X too. Boot2Docker uses a VirtualBox VM that contains a Linux environment with Docker. In this 
recipe, we will set up Docker and download the continuumio/miniconda3 Docker image.

Getting ready
The Docker installation docs are saved at https://docs.docker.com/index.html 
(retrieved July 2015). I installed Docker 1.7.0 with Boot2Docker. The installer requires about 
133 MB. However, if you want to follow the whole recipe, you will need several gigabytes.

How to do it...
1.	 Once Boot2Docker is installed, you need to initialize the environment. This is only 

necessary once, and Linux users don't need this step:
$ boot2docker init

Latest release for github.com/boot2docker/boot2docker is v1.7.0

Downloading boot2docker ISO image...

Success: downloaded https://github.com/boot2docker/boot2docker/
releases/download/v1.7.0/boot2docker.iso

https://docs.python.org/3/library/venv.html#creating-virtual-environments
https://docs.python.org/3/library/venv.html#creating-virtual-environments
https://virtualenvwrapper.readthedocs.org/en/latest/index.html
https://virtualenvwrapper.readthedocs.org/en/latest/index.html
https://docs.docker.com/index.html
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2.	 In the preceding step, you downloaded a VirtualBox VM to a directory such as  
/VirtualBox\ VMs/boot2docker-vm/.

The next step for Mac OS X and Windows users is to start the VM:

$ boot2docker start

3.	 Check the Docker environment by starting a sample container:
$ docker run hello-world

Some people reported a hopefully temporary issue of not 
being able to connect. The issue can be resolved by issuing 
commands with an extra argument, for instance:
 $ docker [--tlsverify=false] run hello-world

4.	 Docker images can be made public. We can search for such images and download 
them. In Setting up Anaconda, we installed Anaconda; however, Anaconda and 
Miniconda Docker images also exist. Use the following command:
$ docker search continuumio

5.	 The preceding command shows a list of Docker images from Continuum Analytics 
– the company that developed Anaconda and Miniconda. Download the Miniconda 3 
Docker image as follows (if you prefer using my container, skip this):
$ docker pull continuumio/miniconda3

6.	 Start the image with the following command:
$ docker run -t -i continuumio/miniconda3 /bin/bash

We start out as root in the image.

7.	 The command $ docker images should list the continuumio/miniconda3 
image as well. If you prefer not to install too much software (possibly only Docker 
and Boot2Docker) for this book, you should use the image I created. It uses the 
continuumio/miniconda3 image as template. This image allows you to execute 
Python scripts in the current working directory on your computer, while using installed 
software from the Docker image:
$ docker run -it -p 8888:8888 -v $(pwd):/usr/data -w /usr/data 
"ivanidris/pydacbk:latest" python <somefile>.py 

8.	 You can also run a IPython notebook in your current working directory with the 
following command:
$ docker run -it -p 8888:8888 -v $(pwd):/usr/data -w /usr/data 
"ivanidris/pydacbk:latest" sh -c "ipython notebook --ip=0.0.0.0 
--no-browser"



Laying the Foundation for Reproducible Data Analysis

10

9.	 Then, go to either http:// 192.168.59.103:8888 or http://
localhost:8888 to view the IPython home screen. You might have noticed that  
the command lines are quite long, so I will post additional tips and tricks to make  
life easier on https://pythonhosted.org/dautil (work in progress).

The Boot2Docker VM shares the /Users directory on Mac OS X and the C:\Users 
directory on Windows. In general and on other operating systems, we can mount 
directories and copy files from the container as described in https://docs.
docker.com/userguide/dockervolumes/ (retrieved July 2015).

10.	 Shut down the VM (unless you are on Linux, where you use the docker command 
instead) with the following command:

$ boot2docker down

How it works...
Docker Hub acts as a central registry for public and private Docker images. In this recipe, we 
downloaded images via this registry. To push an image to Docker Hub, we need to create a 
local registry first. The way Docker Hub works is in many ways comparable to the way source 
code repositories such as GitHub work. You can commit changes as well as push, pull, and 
tag images. The continuumio/miniconda3 image is configured with a special file, which 
you can find at https://github.com/ContinuumIO/docker-images/blob/master/
miniconda3/Dockerfile (retrieved July 2015). In this file, you can read which image was 
used as base, the name of the maintainer, and the commands used to build the image.

See also
ff The Docker user guide at http://docs.docker.com/userguide/ (retrieved  

July 2015)

Keeping track of package versions and 
history in IPython Notebook

The IPython Notebook was added to IPython 0.12 in December 2011. Many Pythonistas feel 
that the IPython Notebook is essential for reproducible data analysis. The IPython Notebook 
is comparable to commercial products such as Mathematica, MATLAB, and Maple. It is an 
interactive web browser-based environment. In this recipe, we will see how to keep track of 
package versions and store IPython sessions in the context of reproducible data analysis. By 
the way, the IPython Notebook has been renamed Jupyter Notebook.

https://pythonhosted.org/dautil
https://docs.docker.com/userguide/dockervolumes/
https://docs.docker.com/userguide/dockervolumes/
https://github.com/ContinuumIO/docker-images/blob/master/miniconda3/Dockerfile
https://github.com/ContinuumIO/docker-images/blob/master/miniconda3/Dockerfile
http://docs.docker.com/userguide/
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Getting ready
For this recipe, you will need a recent IPython installation. The instructions to install IPython  
are at http://ipython.org/install.html (retrieved July 2015). Install it using the  
pip command:

$ [sudo] pip install ipython/jupyter

If you have installed IPython via Anaconda already, check for updates with the following 
commands:

$ conda update conda

$ conda update ipython ipython-notebook ipython-qtconsole

I have IPython 3.2.0 as part of the Anaconda distribution.

How to do it...
We will install log a Python session and use the watermark extension to track package 
versions and other information. Start an IPython shell or notebook. When we start a session, 
we can use the command line switch --logfile=<file name>.py. In this recipe, we use 
the %logstart magic (IPython terminology) function:

In [1]: %logstart cookbook_log.py rotate

Activating auto-logging. Current session state plus future input saved.

Filename       : cookbook_log.py

Mode           : rotate

Output logging : False

Raw input log  : False

Timestamping   : False

State          : active

This example invocation started logging to a file in rotate mode. Both the filename and mode 
are optional. Turn logging off and back on again as follows:

In [2]: %logoff

Switching logging OFF

In [3]: %logon

Switching logging ON

http://ipython.org/install.html
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Install the watermark magic from Github with the following command:

In [4]: %install_ext https://raw.githubusercontent.com/rasbt/watermark/
master/watermark.py

The preceding line downloads a Python file, in my case, to ~/.ipython/extensions/
watermark.py. Load the extension by typing the following line:

%load_ext watermark

The extension can place timestamps as well as software and hardware information. Get 
additional usage documentation and version (I installed watermark 1.2.2) with the following 
command:

%watermark?

For example, call watermark without any arguments:

In [7]: %watermark

… Omitting time stamp …

CPython 3.4.3

IPython 3.2.0

compiler   : Omitting

system     : Omitting

release    : 14.3.0

machine    : x86_64

processor  : i386

CPU cores  : 8

interpreter: 64bit

I omitted the timestamp and other information for personal reasons. A more complete 
example follows with author name (-a), versions of packages specified as a comma-separated 
string (-p), and custom time (-c) in a strftime() based format:

In [8]: %watermark -a "Ivan Idris" -v -p numpy,scipy,matplotlib -c '%b 
%Y' -w

Ivan Idris 'Jul 2015'

CPython 3.4.3

IPython 3.2.0

numpy 1.9.2
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scipy 0.15.1

matplotlib 1.4.3

watermark v. 1.2.2

How it works...
The IPython logger writes commands you type to a Python file. Most of the lines are in the 
following format:

get_ipython().magic('STRING_YOU_TYPED')

You can replay the session with %load <log file>. The logging modes are described in the 
following table:

Mode Description
over This mode overwrites existing log files.
backup If a log file exists with the same name, the old file is renamed.
append This mode appends lines to already existing files.
rotate This mode rotates log files by incrementing numbers, so that log files 

don't get too big.

We used a custom magic function available on the Internet. The code for the function is in a 
single Python file and it should be easy for you to follow. If you want different behavior, you just 
need to modify the file.

See also
ff The custom magics documentation at http://ipython.org/ipython-doc/

dev/config/custommagics.html (retrieved July 2015)

ff Helen Shen (2014). Interactive notebooks: Sharing the code. Nature 515 (7525): 
151–152. doi:10.1038/515151a

ff IPython reference documentation at https://ipython.org/ipython-doc/dev/
interactive/reference.html (retrieved July 2015)

Configuring IPython
IPython has an elaborate configuration and customization system. The components of the 
system are as follows:

ff IPython provides default profiles, but we can create our own profiles

ff Various settable options for the shell, kernel, Qt console, and notebook

http://ipython.org/ipython-doc/dev/config/custommagics.html
http://ipython.org/ipython-doc/dev/config/custommagics.html
https://ipython.org/ipython-doc/dev/interactive/reference.html
https://ipython.org/ipython-doc/dev/interactive/reference.html
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ff Customization of prompts and colors

ff Extensions we saw in Keeping track of package versions and history in IPython 
notebooks

ff Startup files per profile

I will demonstrate some of these components in this recipe.

Getting ready
You need IPython for this recipe, so (if necessary) have a look at the Getting ready section of 
Keeping track of package versions and history in IPython notebooks.

How to do it...
Let's start with a startup file. I have a directory in my home directory at .ipython/profile_
default/startup, which belongs to the default profile. This directory is meant for startup 
files. IPython detects Python files in this directory and executes them in lexical order of 
filenames. Because of the lexical order, it is convenient to name the startup files with a 
combination of digits and strings, for example, 0000-watermark.py. Put the following  
code in the startup file:

get_ipython().magic('%load_ext watermark')
get_ipython().magic('watermark -a "Ivan Idris" -v -p 
numpy,scipy,matplotlib -c \'%b %Y\' -w')

This startup file loads the extension we used in Keeping track of package versions and history 
in IPython notebooks and shows information about package versions. Other use cases include 
importing modules and defining functions. IPython stores commands in a SQLite database, so 
you could gather statistics to find common usage patterns. The following script prints source 
lines and associated counts from the database for the default profile sorted by counts (the 
code is in the ipython_history.py file in this book's code bundle):

import sqlite3
from IPython.utils.path import get_ipython_dir
import pprint
import os

def print_history(file):
    with sqlite3.connect(file) as con:
        c = con.cursor()
        c.execute("SELECT count(source_raw) as csr,\
                  source_raw FROM history\
                  GROUP BY source_raw\
                  ORDER BY csr")
        result = c.fetchall()
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        pprint.pprint(result)
        c.close()

hist_file = '%s/profile_default/history.sqlite' % get_ipython_dir()

if os.path.exists(hist_file):
    print_history(hist_file)
else:
    print("%s doesn't exist" % hist_file)

The highlighted SQL query does the bulk of the work. The code is self-explanatory. If it is not 
clear, I recommend reading Chapter 8, Text Mining and Social Network, of my book Python 
Data Analysis, Packt Publishing.

The other configuration option I mentioned is profiles. We can use the default profiles or 
create our own profiles on a per project or functionality basis. Profiles act as sandboxes  
and you can configure them separately. Here's the command to create a profile:

$ ipython profile create [newprofile]

The configuration files are Python files and their names end with _config.py. In these files, 
you can set various IPython options. Set the option to automatically log the IPython session  
as follows:

c = get_config()

c.TerminalInteractiveShell.logstart=True

The first line is usually included in configuration files and gets the root IPython configuration 
object. The last line tells IPython that we want to start logging immediately on startup so you 
don't have to type %logstart.

Alternatively, you can also set the log file name with the following command:

c.TerminalInteractiveShell.logfile='mylog_file.py'

You can also use the following configuration line that ensures logging in append mode:

c.TerminalInteractiveShell.logappend='mylog_file.py'

See also
ff Introduction to IPython configuration at http://ipython.org/ipython-doc/

dev/config/intro.html#profiles (retrieved July 2015)

ff Terminal IPython options documentation at http://ipython.org/ipython-doc/
dev/config/options/terminal.html (retrieved July 2015)

http://ipython.org/ipython-doc/dev/config/intro.html#profiles
http://ipython.org/ipython-doc/dev/config/intro.html#profiles
http://ipython.org/ipython-doc/dev/config/options/terminal.html
http://ipython.org/ipython-doc/dev/config/options/terminal.html
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Learning to log for robust error checking
Notebooks are useful to keep track of what you did and what went wrong. Logging works in a 
similar fashion, and we can log errors and other useful information with the standard Python 
logging library.

For reproducible data analysis, it is good to know the modules our Python scripts import. In 
this recipe, I will introduce a minimal API from dautil that logs package versions of imported 
modules in a best effort manner.

Getting ready
In this recipe, we import NumPy and pandas, so you may need to import them. See the 
Configuring pandas recipe for pandas installation instructions. Installation instructions for 
NumPy can be found at http://docs.scipy.org/doc/numpy/user/install.html 
(retrieved July 2015). Alternatively, install NumPy with pip using the following command:

$ [sudo] pip install numpy

The command for Anaconda users is as follows:

$ conda install numpy

I have installed NumPy 1.9.2 via Anaconda. We also require AppDirs to find the appropriate 
directory to store logs. Install it with the following command:

$ [sudo] pip install appdirs

I have AppDirs 1.4.0 on my system.

How to do it...
To log, we need to create and set up loggers. We can either set up the loggers with code or use a 
configuration file. Configuring loggers with code is the more flexible option, but configuration files 
tend to be more readable. I use the log.conf configuration file from dautil:

[loggers]
keys=root

[handlers]
keys=consoleHandler,fileHandler

[formatters]
keys=simpleFormatter

http://docs.scipy.org/doc/numpy/user/install.html
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[logger_root]
level=DEBUG
handlers=consoleHandler,fileHandler

[handler_consoleHandler]
class=StreamHandler
level=INFO
formatter=simpleFormatter
args=(sys.stdout,)

[handler_fileHandler]
class=dautil.log_api.VersionsLogFileHandler
formatter=simpleFormatter
args=('versions.log',)

[formatter_simpleFormatter]
format=%(asctime)s - %(name)s - %(levelname)s - %(message)s
datefmt=%d-%b-%Y

The file configures a logger to log to a file with the DEBUG level and to the screen with the 
INFO level. So, the logger logs more to the file than to the screen. The file also specifies the 
format of the log messages. I created a tiny API in dautil, which creates a logger with its 
get_logger() function and uses it to log the package versions of a client program with its 
log() function. The code is in the log_api.py file of dautil:

from pkg_resources import get_distribution
from pkg_resources import resource_filename
import logging
import logging.config
import pprint
from appdirs import AppDirs
import os

def get_logger(name):
    log_config = resource_filename(__name__, 'log.conf')
    logging.config.fileConfig(log_config)
    logger = logging.getLogger(name)

    return logger

def shorten(module_name):
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    dot_i = module_name.find('.')

    return module_name[:dot_i]

def log(modules, name):
    skiplist = ['pkg_resources', 'distutils']

    logger = get_logger(name)
    logger.debug('Inside the log function')

    for k in modules.keys():
        str_k = str(k)

        if '.version' in str_k:
            short = shorten(str_k)

            if short in skiplist:
                continue

            try:
                logger.info('%s=%s' % (short,    
                            get_distribution(short).version))
            except ImportError:
                logger.warn('Could not impport', short)

class VersionsLogFileHandler(logging.FileHandler):
    def __init__(self, fName):
        dirs = AppDirs("PythonDataAnalysisCookbook", 
                       "Ivan Idris")
        path = dirs.user_log_dir
        print(path)

        if not os.path.exists(path):
            os.mkdir(path)

        super(VersionsLogFileHandler, self).__init__(
              os.path.join(path, fName))

The program that uses the API is in the log_demo.py file in this book's code bundle:

import sys
import numpy as np
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import matplotlib.pyplot as plt
import pandas as pd
from dautil import log_api

log_api.log(sys.modules, sys.argv[0])

How it works...
We configured a handler (VersionsLogFileHandler) that writes to file and a handler 
(StreamHandler) that displays messages on the screen. StreamHandler is a class 
in the Python standard library. To configure the format of the log messages, we used the 
SimpleFormater class from the Python standard library.

The API I made goes through modules listed in the sys.modules variable and tries to get the 
versions of the modules. Some of the modules are not relevant for data analysis, so we skip 
them. The log() function of the API logs a DEBUG level message with the debug() method. 
The info() method logs the package version at INFO level.

See also
ff The logging tutorial at https://docs.python.org/3.5/howto/logging.html 

(retrieved July 2015)

ff The logging cookbook at https://docs.python.org/3.5/howto/logging-
cookbook.html#logging-cookbook (retrieved July 2015)

Unit testing your code
If code doesn't do what you want, it's hard to do reproducible data analysis. One way to gain 
control of your code is to test it. If you have tested code manually, you know it is repetitive and 
boring. When a task is boring and repetitive, you should automate it.

Unit testing automates testing and I hope you are familiar with it. When you learn unit testing 
for the first time, you start with simple tests such as comparing strings or numbers. However, you 
hit a wall when file I/O or other resources come into the picture. It turns out that in Python we 
can mock resources or external APIs easily. The packages needed are even part of the standard 
Python library. In the Learning to log for robust error checking recipe, we logged messages to a 
file. If we unit test this code, we don't want to trigger logging from the test code. In this recipe, I 
will show you how to mock the logger and other software components we need.

Getting ready
Familiarize yourself with the code under test in log_api.py.

https://docs.python.org/3.5/howto/logging.html
https://docs.python.org/3.5/howto/logging-cookbook.html#logging-cookbook
https://docs.python.org/3.5/howto/logging-cookbook.html#logging-cookbook
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How to do it...
The code for this recipe is in the test_log_api.py file of dautil. We start by importing the 
module under test and the Python functionality we need for unit testing:

from dautil import log_api
import unittest
from unittest.mock import create_autospec
from unittest.mock import patch

Define a class that contains the test code:

class TestLogApi(unittest.TestCase):

Make the unit tests executable with the following lines:

if __name__ == '__main__':
    unittest.main()

If we call Python functions with the wrong number of arguments, we expect to get a 
TypeError. The following tests check for that:

    def test_get_logger_args(self):
        mock_get_logger =       create_autospec(log_api.get_logger, 
return_value=None)
        mock_get_logger('test')
        mock_get_logger.assert_called_once_with('test')

    def test_log_args(self):
        mock_log = create_autospec(log_api.log, return_value=None)
        mock_log([], 'test')
        mock_log.assert_called_once_with([], 'test')

        with self.assertRaises(TypeError):
            mock_log()

        with self.assertRaises(TypeError):
            mock_log('test')

We used the unittest.create_autospec() function to mock the functions under test. 
Mock the Python logging package as follows:

    @patch('dautil.log_api.logging')
    def test_get_logger_fileConfig(self, mock_logging):
        log_api.get_logger('test')
        self.assertTrue(mock_logging.config.fileConfig.called)
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The @patch decorator replaces logging with a mock. We can also patch with similarly named 
functions. The patching trick is quite useful. Test our get_logger() function with the 
following method:

    @patch('dautil.log_api.get_logger')
    def test_log_debug(self, amock):
        log_api.log({}, 'test')
        self.assertTrue(amock.return_value.debug.called)
        amock.return_value.debug.assert_called_once_with(
                'Inside the log function')

The previous lines check whether debug() was called and with which arguments. The 
following two test methods demonstrate how to use multiple @patch decorators:

    @patch('dautil.log_api.get_distribution')
    @patch('dautil.log_api.get_logger')
    def test_numpy(self, m_get_logger, m_get_distribution):
        log_api.log({'numpy.version': ''}, 'test')
        m_get_distribution.assert_called_once_with('numpy')
        self.assertTrue(m_get_logger.return_value.info.called)

    @patch('dautil.log_api.get_distribution')
    @patch('dautil.log_api.get_logger')
    def test_distutils(self, amock, m_get_distribution):
        log_api.log({'distutils.version': ''}, 'test')
        self.assertFalse(m_get_distribution.called)

How it works...
Mocking is a technique to spy on objects and functions. We substitute them with our own 
spies, which we give just enough information to avoid detection. The spies report to us who 
contacted them and any useful information they received.

See also
ff The unittest.mock library documentation at https://docs.python.org/3/

library/unittest.mock.html#patch-object (retrieved July 2015)

ff The unittest documentation at https://docs.python.org/3/library/
unittest.html (retrieved July 2015)

https://docs.python.org/3/library/unittest.mock.html#patch-object
https://docs.python.org/3/library/unittest.mock.html#patch-object
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
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Configuring pandas
The pandas library has more than a dozen configuration options, as described in http://
pandas.pydata.org/pandas-docs/dev/options.html (retrieved July 2015).

The pandas library is Python open source software originally created 
for econometric data analysis. It uses data structures inspired by the R 
programming language.

You can set and get properties using dotted notation or via functions. It is also possible to 
reset options to defaults and get information about them. The option_context() function 
allows you to limit the scope of the option to a context using the Python with statement. In 
this recipe, I will demonstrate pandas configuration and a simple API to set and reset options 
I find useful. The two options are precision and max_rows. The first option specifies 
floating point precision of output. The second option specifies the maximum rows of a pandas 
DataFrame to print on the screen.

Getting ready
You need pandas and NumPy for this recipe. Instructions to install NumPy are given in 
Learning to log for robust error checking. The pandas installation documentation can be 
found at http://pandas.pydata.org/pandas-docs/dev/install.html (retrieved 
July 2015). The recommended way to install pandas is via Anaconda. I have installed pandas 
0.16.2 via Anaconda. You can update your Anaconda pandas with the following command:

$ conda update pandas

How to do it...
The following code from the options.py file in dautil defines a simple API to set and  
reset options:

import pandas as pd

def set_pd_options():
    pd.set_option('precision', 4) 
    pd.set_option('max_rows', 5)

def reset_pd_options():
    pd.reset_option('precision') 
    pd.reset_option('max_rows')

http://pandas.pydata.org/pandas-docs/dev/options.html
http://pandas.pydata.org/pandas-docs/dev/options.html
http://pandas.pydata.org/pandas-docs/dev/install.html
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The script in configure_pd.py in this book's code bundle uses the following API:

from dautil import options
import pandas as pd
import numpy as np
from dautil import log_api

printer = log_api.Printer()
print(pd.describe_option('precision'))
print(pd.describe_option('max_rows'))

printer.print('Initial precision', pd.get_option('precision'))
printer.print('Initial max_rows', pd.get_option('max_rows'))

# Random pi's, should use random state if possible
np.random.seed(42)
df = pd.DataFrame(np.pi * np.random.rand(6, 2))
printer.print('Initial df', df)

options.set_pd_options()
printer.print('df with different options', df)

options.reset_pd_options()
printer.print('df after reset', df)

If you run the script, you get descriptions for the options that are a bit too long to display here. 
The getter gives the following output:

'Initial precision'

7

'Initial max_rows'

60

Then, we create a pandas DataFrame table with random data. The initial printout looks  
like this:

'Initial df'

          0         1

0  1.176652  2.986757

1  2.299627  1.880741

2  0.490147  0.490071

3  0.182475  2.721173

4  1.888459  2.224476

5  0.064668  3.047062 
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The printout comes from the following class in log_api.py:

class Printer():
    def __init__(self, modules=None, name=None):
        if modules and name:
            log(modules, name)

    def print(self, *args):
        for arg in args:
            pprint.pprint(arg)

After setting the options with the dautil API, pandas hides some of the rows and the floating 
point numbers look different too:

'df with different options'

        0      1

0   1.177  2.987

1   2.300  1.881

..    ...    ...

4   1.888  2.224

5   0.065  3.047

[6 rows x 2 columns]

Because of the truncated rows, pandas tells us how many rows and columns the DataFrame 
table has. After we reset the options, we get the original printout back.

Configuring matplotlib
The matplotlib library allows configuration via the matplotlibrc files and Python code. 
The last option is what we are going to do in this recipe. Small configuration tweaks should 
not matter if your data analysis is strong. However, it doesn't hurt to have consistent and 
attractive plots. Another option is to apply stylesheets, which are files comparable to the 
matplotlibrc files. However, in my opinion, the best option is to use Seaborn on top 
of matplotlib. I will discuss Seaborn and matplotlib in more detail in Chapter 2, Creating 
Attractive Data Visualizations.
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Getting ready
You need to install matplotlib for this recipe. Visit http://matplotlib.org/users/
installing.html (retrieved July 2015) for more information. I have matplotlib 1.4.3 via 
Anaconda. Install Seaborn using Anaconda:

$ conda install seaborn

I have installed Seaborn 0.6.0 via Anaconda.

How to do it...
We can set options via a dictionary-like variable. The following function from the options.py 
file in dautil sets three options:

def set_mpl_options():
    mpl.rcParams['legend.fancybox'] = True
    mpl.rcParams['legend.shadow'] = True
    mpl.rcParams['legend.framealpha'] = 0.7

The first three options have to do with legends. The first option specifies rounded corners for 
the legend, the second options enables showing a shadow, and the third option makes the 
legend slightly transparent. The matplotlib rcdefaults() function resets the configuration.

To demonstrate these options, let's use sample data made available by matplotlib. The 
imports are as follows:

import matplotlib.cbook as cbook
import pandas as pd
import matplotlib.pyplot as plt
from dautil import options
import matplotlib as mpl
from dautil import plotting
import seaborn as sns 

The data is in a CSV file and contains stock price data for AAPL. Use the following commands 
to read the data and stores them in a pandas DataFrame:

data = cbook.get_sample_data('aapl.csv', asfileobj=True)
df = pd.read_csv(data, parse_dates=True, index_col=0)

Resample the data to average monthly values as follows:

df = df.resample('M')

http://matplotlib.org/users/installing.html
http://matplotlib.org/users/installing.html
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The full code is in the configure_matplotlib.ipynb file in this book's code bundle:

import matplotlib.cbook as cbook
import pandas as pd
import matplotlib.pyplot as plt
from dautil import options
import matplotlib as mpl
from dautil import plotting
import seaborn as sns

data = cbook.get_sample_data('aapl.csv', asfileobj=True)
df = pd.read_csv(data, parse_dates=True, index_col=0)
df = df.resample('M')
close = df['Close'].values
dates = df.index.values
fig, axes = plt.subplots(4)

def plot(title, ax):
    ax.set_title(title)
    ax.set_xlabel('Date')

    plotter = plotting.CyclePlotter(ax)
    plotter.plot(dates, close, label='Close')
    plotter.plot(dates, 0.75 * close, label='0.75 * Close')
    plotter.plot(dates, 1.25 * close, label='1.25 * Close')

    ax.set_ylabel('Price ($)')
    ax.legend(loc='best')

plot('Initial', axes[0])
sns.reset_orig()
options.set_mpl_options()

plot('After setting options', axes[1])

sns.reset_defaults()
plot('After resetting options', axes[2])

with plt.style.context(('dark_background')):
    plot('With dark_background stylesheet', axes[3])
    fig.autofmt_xdate()
    plt.show()
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The program plots the data and arbitrary upper and lower band with the default options, 
custom options, and after a reset of the options. I used the following helper class from the 
plotting.py file of dautil:

from itertools import cycle

class CyclePlotter():
    def __init__(self, ax):
        self.STYLES = cycle(["-", "--", "-.", ":"])
        self.LW = cycle([1, 2])
        self.ax = ax

    def plot(self, x, y, *args, **kwargs):
        self.ax.plot(x, y, next(self.STYLES),
                     lw=next(self.LW), *args, **kwargs)

The class cycles through different line styles and line widths. Refer to the following plot for the 
end result:
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How it works...
Importing Seaborn dramatically changes the look and feel of matplotlib plots. Just temporarily 
comment the seaborn lines out to convince yourself. However, Seaborn doesn't seem  
to play nicely with the matplotlib options we set, unless we use the Seaborn functions  
reset_orig() and reset_defaults().

See also
ff The matplotlib customization documentation at http://matplotlib.org/

users/customizing.html (retrieved July 2015)

ff The matplotlib documentation about stylesheets at http://matplotlib.org/
users/style_sheets.html (retrieved July 2015)

Seeding random number generators and 
NumPy print options

For reproducible data analysis, we should prefer deterministic algorithms. Some algorithms 
use random numbers, but in practice we rarely use perfectly random numbers. The algorithms 
provided in numpy.random allow us to specify a seed value. For reproducibility, it is important 
to always provide a seed value but it is easy to forget. A utility function in sklearn.utils 
provides a solution for this issue.

NumPy has a set_printoptions() function, which controls how NumPy prints arrays. 
Obviously, printing should not influence the quality of your analysis too much. However, 
readability is important if you want people to understand and reproduce your results.

Getting ready
Install NumPy using the instructions in the Learning to log for robust error checking recipe. We 
will need scikit-learn, so have a look at http://scikit-learn.org/dev/install.html 
(retrieved July 2015). I have installed scikit-learn 0.16.1 via Anaconda.

How to do it...
The code for this example is in the configure_numpy.py file in this book's code bundle:

from sklearn.utils import check_random_state
import numpy as np
from dautil import options

http://matplotlib.org/users/customizing.html
http://matplotlib.org/users/customizing.html
http://matplotlib.org/users/style_sheets.html
http://matplotlib.org/users/style_sheets.html
http://scikit-learn.org/dev/install.html 


Chapter 1

29

from dautil import log_api

random_state = check_random_state(42)
a = random_state.randn(5)

random_state = check_random_state(42)
b = random_state.randn(5)

np.testing.assert_array_equal(a, b)

printer = log_api.Printer()
printer.print("Default options", np.get_printoptions())

pi_array = np.pi * np.ones(30)
options.set_np_options()
print(pi_array)

# Reset
options.reset_np_options()
print(pi_array)

The highlighted lines show how to get a NumPy RandomState object with 42 as the seed. In 
this example, the arrays a and b are equal, because we used the same seed and the same 
procedure to draw the numbers. The second part of the preceding program uses the following 
functions I defined in options.py:

def set_np_options():
    np.set_printoptions(precision=4, threshold=5,
                        linewidth=65)

def reset_np_options():
    np.set_printoptions(precision=8, threshold=1000,
                        linewidth=75)

Here's the output after setting the options:

[ 3.1416  3.1416  3.1416 ...,  3.1416  3.1416  3.1416] 

As you can see, NumPy replaces some of the values with an ellipsis and it shows only four 
digits after the decimal sign. The NumPy defaults are as follows:

'Default options'

{'edgeitems': 3,

 'formatter': None,
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 'infstr': 'inf',

 'linewidth': 75,

 'nanstr': 'nan',

 'precision': 8,

 'suppress': False,

 'threshold': 1000}

See also
ff The scikit-learn documentation at http://scikit-learn.org/stable/

developers/utilities.html (retrieved July 2015)

ff The NumPy set_printoptions() documentation at http://docs.scipy.
org/doc/numpy/reference/generated/numpy.set_printoptions.html 
(retrieved July 2015)

ff The NumPy RandomState documentation at http://docs.scipy.org/doc/
numpy/reference/generated/numpy.random.RandomState.html  
(retrieved July 2015)

Standardizing reports, code style, and data 
access

Following a code style guide helps improve code quality. Having high-quality code is important 
if you want people to easily reproduce your analysis. One way to adhere to a coding standard 
is to scan your code with static code analyzers. You can use many code analyzers. In this 
recipe, we will use the pep8 analyzer. In general, code analyzers complement or maybe 
slightly overlap each other, so you are not limited to pep8.

Convenient data access is crucial for reproducible analysis. In my opinion, the best type 
of data access is with a specialized API and local data. I will introduce a dautil module I 
created to load weather data provided by the Dutch KNMI.

Reporting is often the last phase of a data analysis project. We can report our findings  
using various formats. In this recipe, we will focus on tabulating our report with the  
tabulate module. The landslide tool creates slide shows from various formats such  
as reStructured text.

http://scikit-learn.org/stable/developers/utilities.html
http://scikit-learn.org/stable/developers/utilities.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.set_printoptions.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.set_printoptions.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.RandomState.html
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Getting ready
You will need pep8 and tabulate. A quick guide to pep8 is available at https://pep8.
readthedocs.org/en/latest/intro.html (retrieved July 2015). I have installed pep8 
1.6.2 via Anaconda. You can install joblib, tabulate, and landslide with the pip command.

I have tabulate 0.7.5 and landslide 1.1.3.

How to do it...
Here's an example pep8 session:

$ pep8 --first log_api.py

log_api.py:21:1: E302 expected 2 blank lines, found 1

log_api.py:44:33: W291 trailing whitespace

log_api.py:50:60: E225 missing whitespace around operator

The –-first switch finds the first occurrence of an error. In the previous example, pep8 
reports the line number where the error occurred, an error code, and a short description of 
the error. I prepared a module dedicated to data access of datasets we will use in several 
chapters. We start with access to a pandas DataFrame stored in a pickle, which contains 
selected weather data from the De Bilt weather station in the Netherlands. I created the 
pickle by downloading a zip file, extracting the data file, and loading the data in a pandas 
DataFrame table. I applied minimal data transformation, including multiplication of values 
and converting empty fields to NaNs. The code is in the data.py file in dautil. I will not 
discuss this code in detail, because we only need to load data from the pickle. However, if 
you want to download the data yourself, you can use the static method I defined in data.
py. Downloading the data will of course give you more recent data, but you will get slightly 
different results if you substitute my pickle. The following code shows the basic descriptive 
statistics with the pandas.DataFrame.describe() method in the report_weather.py 
file in this book's code bundle:

from dautil import data
from dautil import report
import pandas as pd
import numpy as np
from tabulate import tabulate

df = data.Weather.load()
headers = [data.Weather.get_header(header) 
           for header in df.columns.values.tolist()]
df = df.describe()

https://pep8.readthedocs.org/en/latest/intro.html
https://pep8.readthedocs.org/en/latest/intro.html
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Then, the code creates a slides.rst file in the reStructuredText format with dautil.
RSTWriter. This is just a matter of simple string concatenation and writing to a file. The 
highlighted lines in the following code show the tabulate() calls that create table grids 
from the pandas.DataFrame objects:

writer = report.RSTWriter()
writer.h1('Weather Statistics')
writer.add(tabulate(df, headers=headers, 
        tablefmt='grid', floatfmt='.2f'))
writer.divider()
headers = [data.Weather.get_header(header) 
           for header in df.columns.values.tolist()]
builder = report.DFBuilder(df.columns)
builder.row(df.iloc[7].values - df.iloc[3].values)
builder.row(df.iloc[6].values - df.iloc[4].values)
df = builder.build(['ptp', 'iqr'])]

writer.h1('Peak-to-peak and Interquartile Range')

writer.add(tabulate(df, headers=headers, 
        tablefmt='grid', floatfmt='.2f'))
writer.write('slides.rst')
generator = report.Generator('slides.rst', 'weather_report.html')
generator.generate() 

I use the dautil.reportDFBuilder class to create the pandas.DataFrame objects 
incrementally using a dictionary where the keys are columns of the final DataFrame table 
and the values are the rows:

import pandas as pd

class DFBuilder():
    def __init__(self, cols, *args):
        self.columns = cols
        self.df = {}

        for col in self.columns:
            self.df.update({col: []})

        for arg in args:
            self.row(arg)

    def row(self, row):
        assert len(row) == len(self.columns)

        for col, val in zip(self.columns, row):
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            self.df[col].append(val)

        return self.df

    def build(self, index=None):
        self.df = pd.DataFrame(self.df)

        if index:
            self.df.index = index

        return self.df

I eventually generate a HTML file using landslide and my own custom CSS. If you open 
weather_report.html, you will see the first slide with basic descriptive statistics:

The second slide looks like this and contains the peak-to-peak (difference between minimum 
and maximum values) and the interquartile range (difference between the third and first 
quartile):

See also
ff The tabulate PyPi page at https://pypi.python.org/pypi/tabulate 

(retrieved July 2015)

ff The landslide Github page at https://github.com/adamzap/landslide 
(retrieved July 2015)

https://pypi.python.org/pypi/tabulate
https://github.com/adamzap/landslide
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2
Creating Attractive 
Data Visualizations

In this chapter, we will cover:

ff Graphing Anscombe's quartet

ff Choosing seaborn color palettes

ff Choosing matplotlib color maps

ff Interacting with IPython notebook widgets

ff Viewing a matrix of scatterplots

ff Visualizing with d3.js via mpld3

ff Creating heatmaps

ff Combining box plots and kernel density plots with violin plots

ff Visualizing network graphs with hive plots

ff Displaying geographical maps

ff Using ggplot2-like plots

ff Highlighting data points with influence plots



Creating Attractive Data Visualizations

36

Introduction
Data analysis is more of an art than a science. Creating attractive visualizations is an integral 
part of this art. Obviously, what one person finds attractive, other people may find completely 
unacceptable. Just as in art, in the rapidly evolving world of data analysis, opinions, and taste 
change over time; however, in principle, nobody is absolutely right or wrong. As data artists 
and Pythonistas, we can choose from among several libraries of which I will cover matplotlib, 
seaborn, Bokeh, and ggplot. Installation instructions for some of the packages we use in this 
chapter were already covered in Chapter 1, Laying the Foundation for Reproducible Data 
Analysis, so I will not repeat them. I will provide an installation script (which uses pip only) for 
this chapter; you can even use the Docker image I described in the previous chapter. I decided 
to not include the Proj cartography library and the R-related libraries in the image because of 
their size. So for the two recipes involved in this chapter, you may have to do extra work.

Graphing Anscombe's quartet
Anscombe's quartet is a classic example that illustrates why visualizing data is important. 
The quartet consists of four datasets with similar statistical properties. Each dataset has 
a series of x values and dependent y values. We will tabulate these metrics in an IPython 
notebook. However, if you plot the datasets, they look surprisingly different compared to  
each other.

How to do it...
For this recipe, you need to perform the following steps:

1.	 Start with the following imports:
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib as mpl
from dautil import report
from dautil import plotting
import numpy as np
from tabulate import tabulate

2.	 Define the following function to compute the mean, variance, and correlation of x and 
y within a dataset, the slope, and the intercept of a linear fit for each of the datasets:
df = sns.load_dataset("anscombe")

    agg = df.groupby('dataset')\
             .agg([np.mean, np.var])\
             .transpose()



Chapter 2

37

    groups = df.groupby('dataset')

    corr = [g.corr()['x'][1] for _, g in groups]
    builder = report.DFBuilder(agg.columns)
    builder.row(corr)

    fits = [np.polyfit(g['x'], g['y'], 1) for _, g in groups]
    builder.row([f[0] for f in fits])
    builder.row([f[1] for f in fits])
    bottom = builder.build(['corr', 'slope', 'intercept'])

    return df, pd.concat((agg, bottom))

3.	 The following function returns a string, which is partly Markdown, partly restructured 
text, and partly HTML, because core Markdown does not officially support tables:
def generate(table):
    writer = report.RSTWriter()
    writer.h1('Anscombe Statistics')
    writer.add(tabulate(table, tablefmt='html', floatfmt='.3f'))
    
    return writer.rst

4.	 Plot the data and corresponding linear fits with the Seaborn lmplot() function:
def plot(df):
    sns.set(style="ticks")
    g = sns.lmplot(x="x", y="y", col="dataset", 
         hue="dataset", data=df,
         col_wrap=2, ci=None, palette="muted", size=4,
         scatter_kws={"s": 50, "alpha": 1})

    plotting.embellish(g.fig.axes)

5.	 Display a table with statistics, as follows:
df, table = aggregate()
from IPython.display import display_markdown
display_markdown(generate(table), raw=True)
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The following table shows practically identical statistics for each dataset (I modified 
the custom.css file in my IPython profile to get the colors):

6.	 The following lines plot the datasets:
%matplotlib inline
plot(df)

Refer to the following plot for the end result:
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A picture says more than a thousand words. The source code is in the anscombe.ipynb file 
in this book's code bundle.

See also
ff The Anscombe's quartet Wikipedia page at https://en.wikipedia.org/wiki/

Anscombe%27s_quartet (retrieved July 2015)

ff The seaborn documentation for the lmplot() function at https://web.
stanford.edu/~mwaskom/software/seaborn/generated/seaborn.
lmplot.html (retrieved July 2015)

Choosing seaborn color palettes
Seaborn color palettes are similar to matplotlib colormaps. Color can help you discover 
patterns in data and is an important visualization component. Seaborn has a wide range  
of color palettes, which I will try to visualize in this recipe.

How to do it...
1.	 The imports are as follows:

import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
from dautil import plotting

2.	 Use the following function that helps plot the palettes:
def plot_palette(ax, plotter, pal, i, label, ncol=1):
    n = len(pal)
    x = np.linspace(0.0, 1.0, n)
    y = np.arange(n) + i * n
    ax.scatter(x, y, c=x, 
                cmap=mpl.colors.ListedColormap(list(pal)), 
                s=200)
    plotter.plot(x,y, label=label)
    handles, labels = ax.get_legend_handles_labels()
    ax.legend(loc='best', ncol=ncol, fontsize=18)

3.	 Categorical palettes are useful for categorical data, for instance, gender or blood 
type. The following function plots some of the Seaborn categorical palettes:
def plot_categorical_palettes(ax):
    palettes = ['deep', 'muted', 'pastel', 'bright', 'dark', 
'colorblind']

https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://web.stanford.edu/~mwaskom/software/seaborn/generated/seaborn.lmplot.html
https://web.stanford.edu/~mwaskom/software/seaborn/generated/seaborn.lmplot.html
https://web.stanford.edu/~mwaskom/software/seaborn/generated/seaborn.lmplot.html


Creating Attractive Data Visualizations

40

    plotter = plotting.CyclePlotter(ax)
    ax.set_title('Categorical Palettes')

    for i, p in enumerate(palettes):
        pal = sns.color_palette(p)
     plot_palette(ax, plotter, pal, i, p, 4)

4.	 Circular color systems usually use HLS (Hue Lightness Saturation) instead of RGB 
(red green blue) color spaces. They are useful if you have many categories. The 
following function plots palettes using HSL systems:
def plot_circular_palettes(ax):
    ax.set_title('Circular Palettes')
    plotter = plotting.CyclePlotter(ax)

    pal = sns.color_palette("hls", 6)
    plot_palette(ax, plotter, pal, 0, 'hls')

    sns.hls_palette(6, l=.3, s=.8)
    plot_palette(ax, plotter, pal, 1, 'hls l=.3 s=.8')

    pal = sns.color_palette("husl", 6)
    plot_palette(ax, plotter, pal, 2, 'husl')

    sns.husl_palette(6, l=.3, s=.8)
    plot_palette(ax, plotter, pal, 3, 'husl l=.3 s=.8')

5.	 Seaborn also has palettes, which are based on the online ColorBrewer tool  
(http://colorbrewer2.org/). Plot them as follows:
def plot_brewer_palettes(ax):
    ax.set_title('Brewer Palettes')
    plotter = plotting.CyclePlotter(ax)

    pal = sns.color_palette("Paired")
    plot_palette(ax, plotter, pal, 0, 'Paired')

    pal = sns.color_palette("Set2", 6)
    plot_palette(ax, plotter, pal, 1, 'Set2')

6.	 Sequential palettes are useful for wide ranging data, for instance, differing by orders 
of magnitude. Use the following function to plot them:
def plot_sequential_palettes(ax):
    ax.set_title('Sequential Palettes')
    plotter = plotting.CyclePlotter(ax)

    pal = sns.color_palette("Blues")
    plot_palette(ax, plotter, pal, 0, 'Blues')

http://colorbrewer2.org
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    pal = sns.color_palette("BuGn_r")
    plot_palette(ax, plotter, pal, 1, 'BuGn_r')

    pal = sns.color_palette("GnBu_d")
    plot_palette(ax, plotter, pal, 2, 'GnBu_d')

    pal = sns.color_palette("cubehelix", 6)
    plot_palette(ax, plotter, pal, 3, 'cubehelix')

7.	 The following lines call the functions we defined:

%matplotlib inline

fig, axes = plt.subplots(2, 2, figsize=(16, 12))
plot_categorical_palettes(axes[0][0])
plot_circular_palettes(axes[0][1])
plot_brewer_palettes(axes[1][0])
plot_sequential_palettes(axes[1][1])
plotting.hide_axes(axes)
plt.tight_layout()

The complete code is available in the choosing_palettes.ipynb file in this book's code 
bundle. Refer to the following plot for the end result:
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See also
ff The seaborn color palettes documentation at https://web.stanford.

edu/~mwaskom/software/seaborn/tutorial/color_palettes.html 
(retrieved July 2015)

Choosing matplotlib color maps
The matplotlib color maps are getting a lot of criticism lately because they can be misleading; 
however, most colormaps are just fine in my opinion. The defaults are getting a makeover 
in matplotlib 2.0 as announced at http://matplotlib.org/style_changes.html 
(retrieved July 2015). Of course, there are some good arguments that do not support using 
certain matplotlib colormaps, such as jet. In art, as in data analysis, almost nothing is 
absolutely true, so I leave it up to you to decide. In practical terms, I think it is important to 
consider how to deal with print publications and the various types of color blindness. In this 
recipe, I visualize relatively safe colormaps with colorbars. This is a tiny selection of the many 
colormaps in matplotlib.

How to do it...
1.	 The imports are as follows:

import matplotlib.pyplot as plt
import matplotlib as mpl
from dautil import plotting

2.	 Plot the datasets with the following code:
fig, axes = plt.subplots(4, 4)
cmaps = ['autumn', 'spring', 'summer', 'winter',
         'Reds', 'Blues', 'Greens', 'Purples',
         'Oranges', 'pink', 'Greys', 'gray',
         'binary', 'bone', 'hot', 'cool']

for ax, cm in zip(axes.ravel(), cmaps):
    cmap = plt.cm.get_cmap(cm)
    cb = mpl.colorbar.ColorbarBase(ax, cmap=cmap, 
                                   orientation='horizontal')
    cb.set_label(cm)
    ax.xaxis.set_ticklabels([])

plt.tight_layout()
plt.show()

https://web.stanford.edu/~mwaskom/software/seaborn/tutorial/color_palettes.html
https://web.stanford.edu/~mwaskom/software/seaborn/tutorial/color_palettes.html
http://matplotlib.org/style_changes.html
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Refer to the following plot for the end result:

The notebook is in the choosing_colormaps.ipynb file in this book's code bundle. The 
color maps are used in various visualizations in this book.

See also
ff The related matplotlib documentation at http://matplotlib.org/users/

colormaps.html (retrieved July 2015)

Interacting with IPython Notebook widgets
Interactive IPython notebook widgets are, at the time of writing (July 2015), an experimental 
feature. I, and as far as I know, many other people, hope that this feature will remain. In 
a nutshell, the widgets let you select values as you would with HTML forms. This includes 
sliders, drop-down boxes, and check boxes. As you can read, these widgets are very 
convenient for visualizing the weather data I introduced in Chapter 1, Laying the Foundation  
for Reproducible Data Analysis.

How to do it...
1.	 Import the following:

import seaborn as sns
import numpy as np
import pandas as pd

http://matplotlib.org/users/colormaps.html
http://matplotlib.org/users/colormaps.html
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import matplotlib.pyplot as plt
from IPython.html.widgets import interact
from dautil import data
from dautil import ts

2.	 Load the data and request inline plots:
%matplotlib inline
df = data.Weather.load()

3.	 Define the following function, which displays bubble plots:
def plot_data(x='TEMP', y='RAIN', z='WIND_SPEED', f='A', size=10, 
cmap='Blues'):
    dfx = df[x].resample(f)
    dfy = df[y].resample(f)
    dfz = df[z].resample(f)
    
    bubbles = (dfz - dfz.min())/(dfz.max() - dfz.min())
    years = dfz.index.year
    sc = plt.scatter(dfx, dfy, s= size * bubbles + 9, c = years,
                cmap=cmap, label=data.Weather.get_header(z), 
alpha=0.5)
    plt.colorbar(sc, label='Year')
    
    freqs = {'A': 'Annual', 'M': 'Monthly', 'D': 'Daily'}
    plt.title(freqs[f] + ' Averages')
    plt.xlabel(data.Weather.get_header(x))
    plt.ylabel(data.Weather.get_header(y))
    plt.legend(loc='best')

4.	 Call the function we just defined with the following code:
vars = df.columns.tolist()
freqs = ('A', 'M', 'D')
cmaps = [cmap for cmap in plt.cm.datad if not cmap.endswith("_r")]
cmaps.sort()
interact(plot_data, x=vars, y=vars, z=vars, f=freqs, 
size=(100,700), cmap=cmaps)
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5.	 This is one of the recipes where you really should play with the code to understand 
how it works. The following is an example bubble plot:

6.	 Define another function (actually, it has the same name), but this time the function 
groups the data by day of year or month:
def plot_data(x='TEMP', y='RAIN', z='WIND_SPEED', groupby='ts.
groupby_yday', size=10, cmap='Blues'):
    if groupby == 'ts.groupby_yday':
        groupby = ts.groupby_yday
    elif groupby == 'ts.groupby_month':
        groupby = ts.groupby_month
    else:
        raise AssertionError('Unknown groupby ' + groupby)
        
    dfx = groupby(df[x]).mean()
    dfy = groupby(df[y]).mean()
    dfz = groupby(df[z]).mean()
    
    bubbles = (dfz - dfz.min())/(dfz.max() - dfz.min())
    colors = dfx.index.values
    sc = plt.scatter(dfx, dfy, s= size * bubbles + 9, c = colors,
                cmap=cmap, label=data.Weather.get_header(z), 
alpha=0.5)
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    plt.colorbar(sc, label='Day of Year')
    
    by_dict = {ts.groupby_yday: 'Day of Year', ts.groupby_month: 
'Month'}
    plt.title('Grouped by ' + by_dict[groupby])
    plt.xlabel(data.Weather.get_header(x))
    plt.ylabel(data.Weather.get_header(y))
    plt.legend(loc='best')

7.	 Call this function with the following snippet:
groupbys = ('ts.groupby_yday', 'ts.groupby_month')
interact(plot_data, x=vars, y=vars, z=vars, groupby=groupbys, 
size=(100,700), cmap=cmaps)

Refer to the following plot for the end result:

My first impression of this plot is that the temperature and wind speed seem to be correlated. 
The source code is in the Interactive.ipynb file in this book's code bundle.
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See also
ff The documentation on interactive IPython widgets at https://ipython.org/

ipython-doc/dev/api/generated/IPython.html.widgets.interaction.
html (retrieved July 2015)

Viewing a matrix of scatterplots
If you don't have many variables in your dataset, it is a good idea to view all the possible 
scatterplots for your data. You can do this with one function call from either seaborn or 
pandas. These functions display a matrix of plots with kernel density estimation plots or 
histograms on the diagonal.

How to do it...
1.	 Imports the following:

import pandas as pd
from dautil import data
from dautil import ts
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib as mpl

2.	 Load the weather data with the following lines:
df = data.Weather.load()
df = ts.groupby_yday(df).mean()
df.columns = [data.Weather.get_header(c) for c in df.columns]

3.	 Plot with the Seaborn pairplot() function, which plots histograms on the diagonal 
by default:
%matplotlib inline

# Seaborn plotting, issues due to NaNs
sns.pairplot(df.fillna(0))

https://ipython.org/ipython-doc/dev/api/generated/IPython.html.widgets.interaction.html
https://ipython.org/ipython-doc/dev/api/generated/IPython.html.widgets.interaction.html
https://ipython.org/ipython-doc/dev/api/generated/IPython.html.widgets.interaction.html
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The following plots are the result:

4.	 Plot similarly with the pandas scatter_matrix() function and request kernel 
density estimation plots on the diagonal:
sns.set({'figure.figsize': '16, 12'})
mpl.rcParams['axes.linewidth'] = 9
mpl.rcParams['lines.linewidth'] = 2
plots = pd.scatter_matrix(df, marker='o', diagonal='kde')
plt.show()
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Refer to the following plots for the end result:

The complete code is available in the scatter_matrix.ipynb file in this book's  
code bundle.

Visualizing with d3.js via mpld3
D3.js is a JavaScript data visualization library released in 2011, which we can also use in an 
IPython notebook. We will add hovering tooltips to a regular matplotlib plot. As a bridge, we 
need the mpld3 package. This recipe doesn't require any JavaScript coding whatsoever.

Getting ready
I installed mpld3 0.2 with the following command:

$ [sudo] pip install mpld3
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How to do it...
1.	 Start with the imports and enable mpld3:

%matplotlib inline
import matplotlib.pyplot as plt
import mpld3
mpld3.enable_notebook()
from mpld3 import plugins
import seaborn as sns
from dautil import data
from dautil import ts

2.	 Load the weather data and plot it as follows:
df = data.Weather.load()
df = df[['TEMP', 'WIND_SPEED']]
df = ts.groupby_yday(df).mean()

fig, ax = plt.subplots()
ax.set_title('Averages Grouped by Day of Year')
points = ax.scatter(df['TEMP'], df['WIND_SPEED'],
                    s=30, alpha=0.3)
ax.set_xlabel(data.Weather.get_header('TEMP'))
ax.set_ylabel(data.Weather.get_header('WIND_SPEED'))
labels = ["Day of year {0}".format(i) for i in range(366)]
tooltip = plugins.PointLabelTooltip(points, labels)

plugins.connect(fig, tooltip)

The highlighted lines are responsible for the tooltips. In the following screenshot, the Day of 
year 31 text comes from the tooltip:
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As you can see, at the bottom of the plot, you also have widgets for panning and zooming 
(refer to the mpld3_demo.ipynb file in this book's code bundle).

Creating heatmaps
Heat maps visualize data in a matrix using a set of colors. Originally, heat maps were used 
to represent prices of financial assets, such as stocks. Bokeh is a Python package that can 
display heatmaps in an IPython notebook or produce a standalone HTML file.

Getting ready
I have Bokeh 0.9.1 via Anaconda. The Bokeh installation instructions are available at 
http://bokeh.pydata.org/en/latest/docs/installation.html (retrieved  
July 2015).

How to do it...
1.	 The imports are as follows:

from collections import OrderedDict
from dautil import data
from dautil import ts
from dautil import plotting
import numpy as np
import bokeh.plotting as bkh_plt
from bokeh.models import HoverTool

2.	 The following function loads temperature data and groups it by year and month:
def load():
    df = data.Weather.load()['TEMP']
    return ts.groupby_year_month(df)

3.	 Define a function that rearranges data in a special Bokeh structure:
def create_source():
    colors = plotting.sample_hex_cmap()

    month = []
    year = []
    color = []
    avg = []

    for year_month, group in load():
        month.append(ts.short_month(year_month[1]))
        year.append(str(year_month[0]))

http://bokeh.pydata.org/en/latest/docs/installation.html
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        monthly_avg = np.nanmean(group.values)
        avg.append(monthly_avg)
        color.append(colors[min(int(abs(monthly_avg)) - 2, 8)])

    source = bkh_plt.ColumnDataSource(
        data=dict(month=month, year=year, color=color, avg=avg)
    )

    return year, source

4.	 Define a function that returns labels for the horizontal axis:
def all_years():
    years = set(year)
    start_year = min(years)
    end_year = max(years)

    return [str(y) for y in range(int(start_year), int(end_year), 
5)]

5.	 Define a plotting function for the heat map that also sets up hover tooltips:
def plot(year, source):
    fig = bkh_plt.figure(title="De Bilt, NL Temperature (1901 - 
2014)",
                         x_range=all_years(), 
                         y_range=list(reversed(ts.short_
months())),
                         toolbar_location="left", 
                         tools="resize,hover,save,pan,box_
zoom,wheel_zoom")

    fig.rect("year", "month", 1, 1, source=source,
        color="color", line_color=None)

    fig.xaxis.major_label_orientation = np.pi/3

    hover = fig.select(dict(type=HoverTool))
    hover.tooltips = OrderedDict([
        ('date', '@month @year'),
        ('avg', '@avg'),
    ])

    bkh_plt.output_notebook()
    bkh_plt.show(fig)
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6.	 Call the functions you defined:
year, source = create_source()
plot(year, source)

Refer to the following plot for the end result:

The source code is available in the heat_map.ipynb file in this book's code bundle.

See also
ff The Bokeh documentation about embedding Bokeh plots at http://bokeh.

pydata.org/en/latest/docs/user_guide/embed.html (retrieved July 2015)

http://bokeh.pydata.org/en/latest/docs/user_guide/embed.html
http://bokeh.pydata.org/en/latest/docs/user_guide/embed.html
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Combining box plots and kernel density 
plots with violin plots

Violin plots combine box plots and kernel density plots or histograms in one type of plot. 
Seaborn and matplotlib both offer violin plots. We will use Seaborn in this recipe on z-scores 
of weather data. The z-scoring is not essential, but without it, the violins will be more  
spread out.

How to do it...
1.	 Import the required libraries as follows:

import seaborn as sns
from dautil import data
import matplotlib.pyplot as plt

2.	 Load the weather data and calculate z-scores:
df = data.Weather.load()
zscores = (df - df.mean())/df.std()

3.	 Plot a violin plot of the z-scores:
%matplotlib inline
plt.figure()
plt.title('Weather Violin Plot')
sns.violinplot(zscores.resample('M'))
plt.ylabel('Z-scores')

Refer to the following plot for the first violin plot:
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4.	 Plot a violin plot of rainy and dry (the opposite of rainy) days against wind speed:
plt.figure()
plt.title('Rainy Weather vs Wind Speed')
categorical = df
categorical['RAIN'] = categorical['RAIN'] > 0
ax = sns.violinplot(x="RAIN", y="WIND_SPEED", 
                         data=categorical)

Refer to the following plot for the second violin plot:

The source code is available in the violins.ipynb file in this book's code bundle.

See also
ff The Seaborn documentation about violin plots at https://web.stanford.

edu/~mwaskom/software/seaborn/generated/seaborn.violinplot.html 
(retrieved July 2015)

Visualizing network graphs with hive plots
A hive plot is a visualization technique for plotting network graphs. In hive plots, we draw 
edges as curved lines. We group nodes by some property and display them on radial axes. 
NetworkX is one of the most famous Python network graph libraries; however, it doesn't 
support hive plots yet (July 2015). Luckily, several libraries exist that specialize in hive plots. 
Also, we will use an API to partition the graph of Facebook users available at https://snap.
stanford.edu/data/egonets-Facebook.html (retrieved July 2015). The data belongs 
to the Stanford Network Analysis Project (SNAP), which also has a Python API. Unfortunately, 
the SNAP API doesn't support Python 3 yet.

https://web.stanford.edu/~mwaskom/software/seaborn/generated/seaborn.violinplot.html
https://web.stanford.edu/~mwaskom/software/seaborn/generated/seaborn.violinplot.html
https://snap.stanford.edu/data/egonets-Facebook.html
https://snap.stanford.edu/data/egonets-Facebook.html
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Getting ready
I have NetworkX 1.9.1 via Anaconda. The instructions to install NetworkX are at https://
networkx.github.io/documentation/latest/install.html (retrieved July 2015). 
We also need the community package at https://bitbucket.org/taynaud/python-
louvain (retrieved July 2015). There is another package with the same name on PyPi, which 
is completely unrelated. Install the hiveplot package hosted at https://github.com/
ericmjl/hiveplot (retrieved July 2015):

$ [sudo] pip install hiveplot

I wrote the code with hiveplot 0.1.7.4.

How to do it...
1.	 The imports are as follows:

import networkx as nx
import community
import matplotlib.pyplot as plt
from hiveplot import HivePlot
from collections import defaultdict
from dautil import plotting
from dautil import data

2.	 Load the data and create a NetworkX Graph object:
fb_file = data.SPANFB().load()
G = nx.read_edgelist(fb_file, 
                     create_using = nx.Graph(), 
                     nodetype = int)
print(nx.info(G))

3.	 Partition the graph and create a nodes dictionary as follows:
parts = community.best_partition(G)
nodes = defaultdict(list)

for n, d in parts.items():
    nodes[d].append(n)

https://networkx.github.io/documentation/latest/install.html
https://networkx.github.io/documentation/latest/install.html
https://bitbucket.org/taynaud/python-louvain
https://bitbucket.org/taynaud/python-louvain
https://github.com/ericmjl/hiveplot
https://github.com/ericmjl/hiveplot
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4.	 The graph is pretty big, so we will just create three groups of edges:
edges = defaultdict(list)

for u, v in nx.edges(G, nodes[0]):
    edges[0].append((u, v, 0))

for u, v in nx.edges(G, nodes[1]):
    edges[1].append((u, v, 1))

for u, v in nx.edges(G, nodes[2]):
    edges[2].append((u, v, 2))

5.	 Plotting will take about six minutes:
%matplotlib inline
cmap = plotting.sample_hex_cmap(name='hot', ncolors=len(nodes.
keys()))
h = HivePlot(nodes, edges, cmap, cmap)
h.draw()
plt.title('Facebook Network Hive Plot')

After the waiting period, we get the following plot:

The code is in the hive_plot.ipynb file in this book's code bundle.
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Displaying geographical maps
Whether dealing with local of global data, geographical maps are a suitable visualization. To 
plot data on a map, we need coordinates, usually in the form of latitude and longitude values. 
Several file formats exist with which we can save geographical data. In this recipe, we will use 
the special shapefile format and the more common tab separated values (TSV) format. The 
shapefile format was created by the Esri company and uses three mandatory files with the 
extensions .shp , .shx , and .dbf. The .dbf file contains a database with extra information 
for each geographical location in the shapefile. The shapefile we will use contains information 
about country borders, population, and Gross Domestic Product (GDP). We can download 
the shapefile with the cartopy library. The TSV file holds population data for more than 
4000 cities as a timeseries. It comes from https://nordpil.com/resources/world-
database-of-large-cities/ (retrieved July 2015).

Getting ready
First, we need to install Proj.4 from source or, if you are lucky, using a binary distribution from 
https://github.com/OSGeo/proj.4/wiki (retrieved July 2015). The instructions to 
install Proj.4 are available at https://github.com/OSGeo/proj.4 (retrieved July 2015). 
Then, install cartopy with pip—I wrote the code with cartopy-0.13.0. Alternatively, we can run 
the following command:

$ conda install -c scitools cartopy

How to do it...
1.	 The imports are as follows:

import cartopy.crs as ccrs
import matplotlib.pyplot as plt
import cartopy.io.shapereader as shpreader
import matplotlib as mpl
import pandas as pd
from dautil import options
from dautil import data

2.	 We will use color to visualize country populations and populous cities. Load the data 
as follows:
countries = shpreader.natural_earth(resolution='110m',
                                    category='cultural',
                                    name='admin_0_countries')

https://nordpil.com/resources/world-database-of-large-cities/
https://nordpil.com/resources/world-database-of-large-cities/
https://github.com/OSGeo/proj.4/wiki
https://github.com/OSGeo/proj.4
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cities = pd.read_csv(data.Nordpil().load_urban_tsv(),
                     sep='\t', encoding='ISO-8859-1')
mill_cities = cities[cities['pop2005'] > 1000]

3.	 Draw a map, a corresponding colorbar, and mark populous cities on the map with the 
following code:
%matplotlib inline
plt.figure(figsize=(16, 12))
gs = mpl.gridspec.GridSpec(2, 1,
                           height_ratios=[20, 1])
ax = plt.subplot(gs[0], projection=ccrs.PlateCarree())

norm = mpl.colors.Normalize(vmin=0, vmax=2 * 10 ** 9)
cmap = plt.cm.Blues
ax.set_title('Population Estimates by Country')

for country in shpreader.Reader(countries).records():
    ax.add_geometries(country.geometry, ccrs.PlateCarree(),
                      facecolor=cmap(
                          norm(country.attributes['pop_est'])))
    
plt.plot(mill_cities['Longitude'],
         mill_cities['Latitude'], 'r.',
         label='Populous city',
         transform=ccrs.PlateCarree())

options.set_mpl_options()
plt.legend(loc='lower left')

cax = plt.subplot(gs[1])
cb = mpl.colorbar.ColorbarBase(cax,
                               cmap=cmap,
                               norm=norm,
                               orientation='horizontal')

cb.set_label('Population Estimate')
plt.tight_layout()
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Refer to the following plot for the end result:

You can find the code in the plot_map.ipynb file in this book's code bundle.

Using ggplot2-like plots
Ggplot2 is an R library for data visualization popular among R users. The main idea of ggplot2 
is that the product of data visualization consists of many layers. Like a painter, we start with 
an empty canvas and then gradually add layers of paint. Usually, we interface with R code 
from Python with rpy2 (I will discuss several interoperability options in Chapter 11, of my 
book Python Data Analysis). However, if we only want to use ggplot2, it is more convenient 
to use the pyggplot library. In this recipe, we will visualize population growth for three 
countries using Worldbank data retrievable through pandas. The data consists of various 
indicators and related metadata. The spreadsheet at http://api.worldbank.org/v2/
en/topic/19?downloadformat=excel (retrieved July 2015) has descriptions of the 
indicators. I think that we can consider the Worldbank dataset to be static; however, similar 
datasets have frequent changes quite often enough to keep an analyst busy almost full time. 
Obviously, changing the name of an indicator (probably) could break the code, so I decided to 
cache the data via the joblib library. The joblib library is related to scikit-learn, and we 
will discuss it in more detail in Chapter 9, Ensemble Learning and Dimensionality Reduction. 
Unfortunately, this approach has some limitations; in particular, we are not able to pickle all 
Python objects.

http://api.worldbank.org/v2/en/topic/19?downloadformat=excel
http://api.worldbank.org/v2/en/topic/19?downloadformat=excel
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Getting ready
First, you need R with ggplot2 installed. If you are not going to seriously use ggplot2, maybe 
you should skip this recipe altogether. The homepage of R is http://www.r-project.
org/ (retrieved July 2015). The documentation of ggplot2 is at http://docs.ggplot2.
org/current/index.html (retrieved July 2015). You can install pyggplot with pip—I 
used pyggplot-23. To install joblib, visit https://pythonhosted.org/joblib/
installing.html (retrieved July 2015). I have joblib 0.8.4 via Anaconda.

How to do it...
1.	 The imports are as follows:

import pyggplot
from dautil import data

2.	 Load the data with the following code:
dawb = data.Worldbank()
pop_grow = dawb.get_name('pop_grow')
df = dawb.download(indicator=pop_grow, start=1984, end=2014)
df = dawb.rename_columns(df, use_longnames=True)

3.	 The following line initializes pyggplot with the pandas DataFrame object we created:
p = pyggplot.Plot(df)

4.	 Add a bar chart with the following line:
p.add_bar('country', dawb.get_longname(pop_grow), color='year')

5.	 Flip the chart so that the bars point to the right and render:
p.coord_flip()
p.render_notebook()

http://www.r-project.org/
http://www.r-project.org/
http://docs.ggplot2.org/current/index.html
http://docs.ggplot2.org/current/index.html
https://pythonhosted.org/joblib/installing.html
https://pythonhosted.org/joblib/installing.html
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Refer to the following plot for the end result:

The code is in the using_ggplot.ipynb file in this book's code bundle.

Highlighting data points with influence plots
Influence plots take into account residuals after a fit, influence, and leverage for individual 
data points similar to bubble plots. The size of the residuals is plotted on the vertical axis and 
can indicate that a data point is an outlier. To understand influence plots, take a look at the 
following equations:
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The residuals according to the statsmodels documentation are scaled by standard 
deviation (2.1). In (2.2), n is the number of observations and p is the number of regressors. 
We have a so-called hat-matrix, which is given by (2.3).

The diagonal elements of the hat matrix give the special metric called leverage. Leverage 
serves as the horizontal axis and indicates potential influence of influence plots. In influence 
plots, influence determines the size of plotted points. Influential points tend to have high 
residuals and leverage. To measure influence, statsmodels can use either Cook's distance 
(2.4) or DFFITS (2.5).

How to do it...
1.	 The imports are as follows:

import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.formula.api import ols
from dautil import data

2.	 Get the available country codes:
dawb = data.Worldbank()

countries = dawb.get_countries()[['name', 'iso2c']]

3.	 Load the data from the Worldbank:
population = dawb.download(indicator=[dawb.get_name('pop_grow'), 
dawb.get_name('gdp_pcap'),
                                    dawb.get_name('primary_
education')],
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                         country=countries['iso2c'], start=2014, 
end=2014)

population = dawb.rename_columns(population)

4.	 Define an ordinary least squares model, as follows:
population_model = ols("pop_grow ~ gdp_pcap + primary_education",
                       data=population).fit()

5.	 Display an influence plot of the model using Cook's distance:
%matplotlib inline
fig, ax = plt.subplots(figsize=(19.2, 14.4))
fig = sm.graphics.influence_plot(population_model, ax=ax, 
criterion="cooks")
plt.grid()

Refer to the following plot for the end result:

The code is in the highlighting_influence.ipynb file in this book's code bundle.
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See also
ff The Wikipedia page about the Cook's distance at https://en.wikipedia.org/

wiki/Cook%27s_distance (retrieved July 2015)

ff The Wikipedia page about DFFITS at https://en.wikipedia.org/wiki/DFFITS 
(retrieved July 2015)

https://en.wikipedia.org/wiki/Cook%27s_distance
https://en.wikipedia.org/wiki/Cook%27s_distance
https://en.wikipedia.org/wiki/DFFITS
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3
Statistical Data 

Analysis and Probability

We will cover the following recipes in this chapter:

ff Fitting data to the exponential distribution

ff Fitting aggregated data to the gamma distribution

ff Fitting aggregated counts to the Poisson distribution

ff Determining bias

ff Estimating kernel density

ff Determining confidence intervals for mean, variance, and standard deviation

ff Sampling with probability weights

ff Exploring extreme values

ff Correlating variables with the Pearson's correlation

ff Correlating variables with the Spearman rank correlation

ff Correlating a binary and a continuous variable with the point-biserial correlation

ff Evaluating relationships between variables with ANOVA
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Introduction
Various statistical distributions have been invented, which are the equivalent of the wheel 
for data analysts. Just as whatever I think of comes out differently in print, data in our world 
doesn't follow strict mathematical laws. Nevertheless, after visualizing our data, we can see 
that the data follows (to certain extent) a distribution. Even without visualization, we can 
find a candidate distribution using rules of thumb. The next step is to try to fit the data to a 
known distribution. If the data is very complex, possibly due to a high number of variables, it is 
useful to estimate its kernel density (also useful with one variable). In all scenarios, it is good 
to estimate the confidence intervals or p-values of our results. When we have at least two 
variables, it is sometimes appropriate to have a look at the correlation between variables.  
In this chapter, we will apply three types of correlation.

Fitting data to the exponential distribution
The exponential distribution is a special case of the gamma distribution, which we will also 
encounter in this chapter. The exponential distribution can be used to analyze extreme values 
for rainfall. It can also be used to model the time it takes to serve a customer in a queue. 
For zero and negative values, the probability distribution function (PDF) of the exponential 
distribution is zero. For positive values, the PDF decays exponentially:
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We will use rain data as an example, which is a good candidate for an exponential distribution 
fit. Obviously, the amount of rain cannot be negative and we know that heavy rain is less likely 
than no rain at all. In fact, a day without rain is very likely.

How to do it...
The following steps fit the rain data to the exponential distribution:

1.	 The imports are as follows:
from scipy.stats.distributions import expon
import matplotlib.pyplot as plt
import dautil as dl
from IPython.display import HTML



Chapter 3

69

2.	 I made a wrapper class that calls the scipy.stats.expon methods. First, call the 
fit() method:
rain = dl.data.Weather.load()['RAIN'].dropna()
dist = dl.stats.Distribution(rain, expon)
dl.options.set_pd_options()
html_builder = dl.report.HTMLBuilder()
html_builder.h1('Fitting Data to the Exponential Distribution')
loc, scale = dist.fit()
table = dl.report.DFBuilder(['loc', 'scale'])
table.row([loc, scale])
html_builder.h2('Distribution Parameters')
html_builder.add_df(table.build())

3.	 The following code calls the scipy.stats.expon.pdf() method and the  
scipy.stats.describe() function on the fit residuals:
pdf = dist.pdf(loc, scale)
html_builder.h2('Residuals of the Fit')
residuals = dist.describe_residuals()
html_builder.add(residuals.to_html())

4.	 To evaluate the fit, we can use metrics. Compute fit metrics with the following  
code snippet:
table2 = dl.report.DFBuilder(['Mean_AD', 'RMSE'])
table2.row([dist.mean_ad(), dist.rmse()])
html_builder.h2('Fit Metrics')
html_builder.add_df(table2.build())

5.	 Plot the fit and display the analysis report as follows:
plt.hist(rain, bins=dist.nbins, normed=True, label='Rain')
plt.plot(dist.x, pdf, label='PDF')
plt.title('Fitting to the exponential distribution')

# Limiting the x-asis for a better plot
plt.xlim([0, 15])
plt.xlabel(dl.data.Weather.get_header('RAIN'))
plt.ylabel('Probability')
plt.legend(loc='best')
HTML(html_builder.html)
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Refer to the following screenshot for the end result (the code is in the fitting_expon.
ipynb file in this book's code bundle):

How it works…
The scale parameter returned by scipy.stats.expon.fit() is the inverse of the decay 
parameter from (3.1). We get about 2 for the scale value, so the decay is about half. The 
probability for no rain is therefore about half. The fit residuals should have a mean and skew 
close to 0. If we have a nonzero skew, something strange must be going on, because we don't 
expect the residuals to be skewed in any direction. The mean absolute deviation (MAD) and 
root mean square error (RMSE) are regression metrics, which we will cover in more detail in 
Chapter 10, Evaluating Classifiers, Regressors, and Clusters.

See also
ff The exponential distribution Wikipedia page at https://en.wikipedia.org/

wiki/Exponential_distribution (retrieved August 2015)

ff The relevant SciPy documentation at http://docs.scipy.org/doc/scipy-
dev/reference/generated/scipy.stats.expon.html (retrieved August 
2015)

https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/Exponential_distribution
http://docs.scipy.org/doc/scipy-dev/reference/generated/scipy.stats.expon.html
http://docs.scipy.org/doc/scipy-dev/reference/generated/scipy.stats.expon.html
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Fitting aggregated data to the gamma 
distribution

The gamma distribution can be used to model the size of insurance claims, rainfall, and the 
distribution of inter-spike intervals in brains. The PDF for the gamma distribution is defined by 
shape k and scale θ as follows:
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There is also a definition that uses an inverse scale parameter (used by SciPy). The mean and 
variance of the gamma distribution are described by (3.3) and (3.4). As you can see, we can 
estimate the shape parameter from the mean and variance using simple algebra.

How to do it...
Let's fit aggregates for the rain data for January to the gamma distribution:

1.	 Start with the following imports:
from scipy.stats.distributions import gamma
import matplotlib.pyplot as plt
import dautil as dl
import pandas as pd
from IPython.display import HTML

2.	 Load the data and select aggregates for January:
rain = dl.data.Weather.load()['RAIN'].resample('M').dropna()
rain = dl.ts.groupby_month(rain)
rain = rain.get_group(1)

3.	 Derive a value for k from the mean and variance of the distribution, and use it to fit 
the data:
dist = dl.stats.Distribution(rain, gamma)

a = (dist.mean() ** 2)/dist.var()
shape, loc, scale = dist.fit(a)
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The rest of the code is similar to the code in Fitting data to the exponential distribution. Refer 
to the following screenshot for the end result (the code is in the fitting_gamma.ipynb file 
in this book's code bundle):

See also
ff The relevant SciPy documentation at http://docs.scipy.org/doc/scipy-

dev/reference/generated/scipy.stats.gamma.html#scipy.stats.
gamma (retrieved August 2015)

ff The Wikipedia page for the gamma distribution at https://en.wikipedia.org/
wiki/Gamma_distribution (retrieved August 2015)

Fitting aggregated counts to the Poisson 
distribution

The Poisson distribution is named after the French mathematician Poisson, who published a 
thesis about it in 1837. The Poisson distribution is a discrete distribution usually associated 
with counts for a fixed interval of time or space. It is only defined for integer values k. For 
instance, we could apply it to monthly counts of rainy days. In this case, we implicitly assume 
that the event of a rainy day occurs at a fixed monthly rate. The goal of fitting the data to the 
Poisson distribution is to find the fixed rate. 

http://docs.scipy.org/doc/scipy-dev/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma
http://docs.scipy.org/doc/scipy-dev/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma
http://docs.scipy.org/doc/scipy-dev/reference/generated/scipy.stats.gamma.html#scipy.stats.gamma
https://en.wikipedia.org/wiki/Gamma_distribution
https://en.wikipedia.org/wiki/Gamma_distribution
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The following equations describe the probability mass function (3.5) and rate parameter (3.6) 
of the Poisson distribution:
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How to do it...
The following steps fit using the maximum likelihood estimation (MLE) method:

1.	 The imports are as follows:
from scipy.stats.distributions import poisson
import matplotlib.pyplot as plt
import dautil as dl
from scipy.optimize import minimize
from IPython.html.widgets.interaction import interactive
from IPython.core.display import display
from IPython.core.display import HTML

2.	 Define the function to maximize:
def log_likelihood(k, mu):
    return poisson.logpmf(k, mu).sum()

3.	 Load the data and group it by month:
def count_rain_days(month):
    rain = dl.data.Weather.load()['RAIN']
    rain = (rain > 0).resample('M', how='sum')
    rain = dl.ts.groupby_month(rain)
    rain = rain.get_group(month)
    
    return rain

4.	 Define the following visualization function:
def plot(rain, dist, params, month):
    fig, ax = plt.subplots()
    plt.title('Fitting to the Poisson distribution ({})'.
format(dl.ts.short_month(month)))

    # Limiting the x-asis for a better plot
    plt.xlim([0, 15])
    plt.figtext(0.5, 0.7, 'rate {:.3f}'.format(params.x[0]), 
alpha=0.7,
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                fontsize=14)
    plt.xlabel('# Rainy days in a month')
    plt.ylabel('Probability')
    ax.hist(dist.train, bins=dist.nbins, normed=True, 
label='Data')
    ax.plot(dist.x, poisson.pmf(dist.x, params.x))

5.	 Define a function to serve as the entry point:
def fit_poisson(month):
    month_index = dl.ts.month_index(month)
    rain = count_rain_days(month_index)
    
    dist = dl.stats.Distribution(rain, poisson, range=[-0.5, 
19.5])
    params = minimize(log_likelihood, x0=rain.mean(), 
args=(rain,))
    plot(rain, dist, params, month_index)

6.	 Use interactive widgets so we can display a plot for each month:
display(interactive(fit_poisson, month=dl.nb.create_month_
widget(month='May')))
HTML(dl.report.HTMLBuilder().watermark())

Refer to the following screenshot for the end result (see the fitting_poisson.ipynb file 
in this book's code bundle):
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See also
ff The Poisson distribution Wikipedia page at https://en.wikipedia.org/wiki/

Poisson_distribution (retrieved August 2015)

ff The related SciPy documentation at http://docs.scipy.org/doc/scipy/
reference/generated/scipy.stats.poisson.html#scipy.stats.
poisson (retrieved August 2015)

Determining bias
When teaching probability, it is customary to give examples of coin tosses. Whether it is going 
to rain or not is more or less like a coin toss. If we have two possible outcomes, the binomial 
distribution is appropriate. This distribution requires two parameters: the probability and the 
sample size.

In statistics, there are two generally accepted approaches. In the frequentist approach, we 
measure the number of coin tosses and use that frequency for further analysis. Bayesian 
analysis is named after its founder the Reverend Thomas Bayes. The Bayesian approach is 
more incremental and requires a prior distribution, which is the distribution we assume before 
performing experiments. The posterior distribution is the distribution we are interested in and 
which we obtain after getting new data from experiments. Let's first have a look at the following 
equations:
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(3.7) and (3.8) describe the probability mass function for the binomial distribution. (3.9) 
comes from an essay published by Bayes. The equation is about an experiment with m 
successes and n failures and assumes a uniform prior distribution for the probability 
parameter of the binomial distribution.

https://en.wikipedia.org/wiki/Poisson_distribution
https://en.wikipedia.org/wiki/Poisson_distribution
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html#scipy.stats.poisson
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html#scipy.stats.poisson
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.poisson.html#scipy.stats.poisson
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How to do it...
In this recipe, we will apply the frequentist and Bayesian approach to rain data:

1.	 The imports are as follows:
import dautil as dl
from scipy import stats
import matplotlib.pyplot as plt
import numpy as np
from IPython.html.widgets.interaction import interact
from IPython.display import HTML

2.	 Define the following function to load the data:
def load():
    rainy = dl.data.Weather.rain_values() > 0
    n = len(rainy)
    nrains = np.cumsum(rainy)

    return n, nrains

3.	 Define the following function to compute the posterior:
def posterior(i, u, data):
    return stats.binom(i, u).pmf(data[i])

4.	 Define the following function to plot the posterior for the subset of the data:
def plot_posterior(ax, day, u, nrains):
    ax.set_title('Posterior distribution for day {}'.format(day))
    ax.plot(posterior(day, u, nrains),
            label='rainy days in period={}'.format(nrains[day]))
    ax.set_xlabel('Uniform prior parameter')
    ax.set_ylabel('Probability rain')
    ax.legend(loc='best')

5.	 Define the following function to do the plotting:
def plot(day1=1, day2=30):
    fig, [[upleft, upright], [downleft, downright]] = plt.
subplots(2, 2)
    plt.suptitle('Determining bias of rain data')
    x = np.arange(n) + 1
    upleft.set_title('Frequentist Approach')
    upleft.plot(x, nrains/x, label='Probability rain')
    upleft.set_xlabel('Days')
    set_ylabel(upleft)

    max_p = np.zeros(n)
    u = np.linspace(0, 1, 100)
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    for i in x - 1:
        max_p[i] = posterior(i, u, nrains).argmax()/100

    downleft.set_title('Bayesian Approach')
    downleft.plot(x, max_p)
    downleft.set_xlabel('Days')
    set_ylabel(downleft)

    plot_posterior(upright, day1, u, nrains)
    plot_posterior(downright, day2, u, nrains)
    plt.tight_layout()

6.	 The following lines call the other functions and place a watermark:
interact(plot, day1=(1, n), day2=(1, n))
HTML(dl.report.HTMLBuilder().watermark())

Refer to the following screenshot for the end result (see the determining_bias.ipynb file 
in this book's code bundle):
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See also
ff The Wikipedia page about the essay mentioned in this recipe is at https://

en.wikipedia.org/wiki/An_Essay_towards_solving_a_Problem_in_
the_Doctrine_of_Chances (retrieved August 2015)

Estimating kernel density
Often, we have an idea about the kind of distribution that is appropriate for our data. If that is 
not the case, we can apply a procedure called kernel density estimation. This method doesn't 
make any assumptions and is nonparametric. We basically smooth the data in an attempt  
to get a handle on the probability density. To smooth data, we can use various functions. 
These functions are called kernel functions in this context. The following equation defines  
the estimator:
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In the preceding formula, K is the kernel function, a function with properties similar to a PDF. 
The bandwidth h parameter controls the smoothing process and can be kept fixed or varied. 
Some libraries use rules of thumb to calculate h, while others let you specify its value. SciPy, 
statsmodels, scikit-learn, and Seaborn implement kernel density estimation using different 
algorithms.

How to do it...
In this recipe, we will estimate bivariate kernel density using weather data:

1.	 The imports are as follows:
import seaborn as sns
import matplotlib.pyplot as plt
import dautil as dl
from dautil.stats import zscores
import statsmodels.api as sm
from sklearn.neighbors import KernelDensity
import numpy as np
from scipy import stats
from IPython.html import widgets
from IPython.core.display import display
from IPython.display import HTML

https://en.wikipedia.org/wiki/An_Essay_towards_solving_a_Problem_in_the_Doctrine_of_Chances
https://en.wikipedia.org/wiki/An_Essay_towards_solving_a_Problem_in_the_Doctrine_of_Chances
https://en.wikipedia.org/wiki/An_Essay_towards_solving_a_Problem_in_the_Doctrine_of_Chances
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2.	 Define the following function to plot the estimated kernel density:
def plot(ax, a, b, c, xlabel, ylabel):
    dl.plotting.scatter_with_bar(ax, 'Kernel Density', a.values, 
b.values, c=c, cmap='Blues')
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)

3.	 In the following notebook cell, load the data and define widgets for the selection of 
weather variables:
df = dl.data.Weather.load().resample('M').dropna()
columns = [str(c) for c in df.columns.values]
var1 = widgets.Dropdown(options=columns, selected_label='RAIN')
display(var1)
var2 = widgets.Dropdown(options=columns, selected_label='TEMP')
display(var2)

4.	 In the next notebook cell, define variables using the values of the widgets we created:
x = df[var1.value]
xlabel = dl.data.Weather.get_header(var1.value)
y = df[var2.value]
ylabel = dl.data.Weather.get_header(var2.value)
X = [x, y]

5.	 The next notebook cell does the heavy lifting with the most important lines highlighted:
# need to use zscores to avoid errors
Z = [zscores(x), zscores(y)]
kde = stats.gaussian_kde(Z)

_, [[sp_ax, sm_ax], [sk_ax, sns_ax]] = plt.subplots(2, 2)
plot(sp_ax, x, y, kde.pdf(Z), xlabel, ylabel)
sp_ax.set_title('SciPy')

sm_kde = sm.nonparametric.KDEMultivariate(data=X, var_type='cc',
                                          bw='normal_reference')
sm_ax.set_title('statsmodels')
plot(sm_ax, x, y, sm_kde.pdf(X), xlabel, ylabel)

XT = np.array(X).T
sk_kde = KernelDensity(kernel='gaussian', bandwidth=0.2).fit(XT)
sk_ax.set_title('Scikit Learn')
plot(sk_ax, x, y, sk_kde.score_samples(XT), xlabel, ylabel)
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sns_ax.set_title('Seaborn')
sns.kdeplot(x, y, ax=sns_ax)
sns.rugplot(x, color="b", ax=sns_ax)
sns.rugplot(y, vertical=True, ax=sns_ax)
sns_ax.set_xlabel(xlabel)
sns_ax.set_ylabel(ylabel)

plt.tight_layout()
HTML(dl.report.HTMLBuilder().watermark())

Refer to the following screenshot for the end result (see the kernel_density_
estimation.ipynb file in this book's code bundle):

See also
ff The kernel density estimation Wikipedia page at https://en.wikipedia.org/

wiki/Kernel_density_estimation (retrieved August 2015)

ff The related statsmodels documentation at http://statsmodels.sourceforge.
net/devel/generated/statsmodels.nonparametric.kernel_density.
KDEMultivariate.html (retrieved August 2015)

ff The related scikit-learn documentation at http://scikit-learn.org/stable/
modules/density.html (retrieved August 2015)

https://en.wikipedia.org/wiki/Kernel_density_estimation
https://en.wikipedia.org/wiki/Kernel_density_estimation
http://statsmodels.sourceforge.net/devel/generated/statsmodels.nonparametric.kernel_density.KDEMultivariate.html
http://statsmodels.sourceforge.net/devel/generated/statsmodels.nonparametric.kernel_density.KDEMultivariate.html
http://statsmodels.sourceforge.net/devel/generated/statsmodels.nonparametric.kernel_density.KDEMultivariate.html
http://scikit-learn.org/stable/modules/density.html
http://scikit-learn.org/stable/modules/density.html
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Determining confidence intervals for mean, 
variance, and standard deviation

It is sometimes useful to imagine that the data we observe is just the tip of an iceberg. If 
you get into this mindset, then you probably will want to know how big this iceberg actually 
is. Obviously, if you can't see the whole thing, you can still try to extrapolate from the data 
you have. In statistics we try to estimate confidence intervals, which are an estimated range 
usually associated with a certain confidence level quoted in percentages.

The scipy.stats.bayes_mvs() function estimates confidence intervals for mean, 
variance, and standard deviation. The function uses Bayesian statistics to estimate 
confidence assuming that the data is independent and normally distributed. Jackknifing is an 
alternative deterministic algorithm to estimate confidence intervals. It falls under the family of 
resampling algorithms. Usually, we generate new datasets under the jackknifing algorithm by 
deleting one value (we can also delete two or more values). We generate data N times, where 
N is the number of values in the dataset. Typically, if we want a 5 percent confidence level, 
we estimate the means or variances for the new datasets and determine the 2.5 and 97.5 
percentile values.

How to do it...
In this recipe, we estimate confidence intervals with the scipy.stats.bayes_mvs() 
function and jackknifing:

1.	 The imports are as follows:
from scipy import stats
import dautil as dl
from dautil.stats import jackknife
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from IPython.html.widgets.interaction import interact
from IPython.display import HTML

2.	 Define the following function to visualize the Scipy result using error bars:
def plot_bayes(ax, metric, var, df):
    vals = np.array([[v.statistic, v.minmax[0], v.minmax[1]] for v 
in
                     df[metric].values])

    ax.set_title('Bayes {}'.format(metric))
    ax.errorbar(np.arange(len(vals)), vals.T[0], yerr=(vals.T[1], 
vals.T[2]))
    set_labels(ax, var)
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3.	 Define the following function to visualize the jackknifing result using error bars:
def plot_jackknife(ax, metric, func, var, df):
    vals = df.apply(lambda x: jackknife(x, func, alpha=0.95))
    vals = np.array([[v[0], v[1], v[2]] for v in vals.values])

    ax.set_title('Jackknife {}'.format(metric))
    ax.errorbar(np.arange(len(vals)), vals.T[0], yerr=(vals.T[1], 
vals.T[2]))
    set_labels(ax, var)

4.	 Define the following function, which will be called with the help of an IPython 
interactive widget:
def confidence_interval(var='TEMP'):
    df = dl.data.Weather.load().dropna()
    df = dl.ts.groupby_yday(df)
    
    def f(x):
        return stats.bayes_mvs(x, alpha=0.95)

    bayes_df = pd.DataFrame([[v[0], v[1], v[2]] for v in
                             df[var].apply(f).values], 
columns=['Mean', 'Var',
                                                                
'Std'])

    fig, axes = plt.subplots(2, 2)
    fig.suptitle('Confidence Intervals')

    plot_bayes(axes[0][0], 'Mean', var, bayes_df)
    plot_bayes(axes[0][1], 'Var', var, bayes_df)
    plot_jackknife(axes[1][0], 'Mean', np.mean, var, df[var])
    plot_jackknife(axes[1][1], 'Mean', np.var, var, df[var])

    plt.tight_layout()

5.	 Set up an interactive IPython widget:
interact(confidence_interval, var=dl.data.Weather.get_headers())
HTML(dl.report.HTMLBuilder().watermark())
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Refer to the following screenshot for the end result (see the bayes_confidence.ipynb file 
in this book's code bundle):

See also
ff The Wikipedia page on jackknife resampling at https://en.wikipedia.org/

wiki/Jackknife_resampling (retrieved August 2015)

ff T.E. Oliphant, "A Bayesian perspective on estimating mean, variance, and standard-
deviation from data" (http://hdl.handle.net/1877/438, 2006)

Sampling with probability weights
To create the nuclear bomb during the Second World War, physicists needed to perform pretty 
complicated calculations. Stanislaw Ulam got the idea to treat this challenge as a game of 
chance. Later, the method he came up with was given the code name Monte Carlo. Games 
of chance usually have very simple rules, but playing in an optimal way can be difficult. 
According to quantum mechanics, subatomic particles are also unpredictable. If we simulate 
many experiments with subatomic particles, we still can get an idea of how they are likely to 
behave. The Monte Carlo method is not deterministic, but it approaches the correct result for 
a complex computation for a sufficiently large number of simulations.

https://en.wikipedia.org/wiki/Jackknife_resampling
https://en.wikipedia.org/wiki/Jackknife_resampling
http://hdl.handle.net/1877/438
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The statsmodels.distributions.empirical_distribution.ECDF class defines the 
cumulative distribution function of a data array. We can use its output to simulate a complex 
process. This simulation is not perfect, because we lose information in the process.

How to do it...
In this recipe, we will simulate weather processes. In particular, I am interested in annual 
temperature values. I am interested in finding out whether the simulated data sets also  
show an upward trend:

1.	 The imports are as follows:
from statsmodels.distributions.empirical_distribution import ECDF
import dautil as dl
import numpy as np
import matplotlib.pyplot as plt
from sklearn.utils import check_random_state
from IPython.html.widgets.interaction import interact
from IPython.core.display import HTML

2.	 Define the following function to calculate the slope:
def slope(x, y):
    return np.polyfit(x, y, 1)[0]

3.	 Define the following function to generate data for a single year:
def simulate(x, years, rs, p):
    N = len(years)
    means = np.zeros(N)

    for i in range(N):
        sample = rs.choice(x, size=365, p=p)
        means[i] = sample.mean()

    return means, np.diff(means).mean(), slope(years, means)
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4.	 Define the following function to run multiple simulations:
def run_multiple(times, x, years, p):
    sims = []
    rs = check_random_state(20)

    for i in range(times):
        sims.append(simulate(x, years, rs, p))

    return np.array(sims)

5.	 Define the following function, which by default loads temperature values:
def main(var='TEMP'):
    df = dl.data.Weather.load().dropna()[var]
    cdf = ECDF(df)
    x = cdf.x[1:]
    p = np.diff(cdf.y)

    df = df.resample('A')
    years = df.index.year
    sims = run_multiple(500, x, years, p)

    sp = dl.plotting.Subplotter(2, 1, context)
    plotter = dl.plotting.CyclePlotter(sp.ax)
    plotter.plot(years, df.values, label='Data')
    plotter.plot(years, sims[0][0], label='Sim 1')
    plotter.plot(years, sims[1][0], label='Sim 2')
    header = dl.data.Weather.get_header(var)
    sp.label(title_params=header, ylabel_params=header)
    sp.ax.legend(loc='best')

    sp.next_ax()
    sp.label()
    sp.ax.hist(sims.T[2], normed=True)
    plt.figtext(0.2, 0.3, 'Slope of the Data {:.3f}'.
format(slope(years, df.values)))
    plt.tight_layout()
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The notebook stored in the sampling_weights.ipynb file in this book's code bundle gives 
you the option to select other weather variables too. Refer to the following screenshot for the 
end result:

See also
ff The Wikipedia page for the Monte Carlo method at https://en.wikipedia.org/

wiki/Monte_Carlo_method (retrieved August 2015)

ff The documentation for the ECDF class at http://statsmodels.sourceforge.
net/0.6.0/generated/statsmodels.distributions.empirical_
distribution.ECDF.html (retrieved August 2015)

https://en.wikipedia.org/wiki/Monte_Carlo_method
https://en.wikipedia.org/wiki/Monte_Carlo_method
http://statsmodels.sourceforge.net/0.6.0/generated/statsmodels.distributions.empirical_distribution.ECDF.html
http://statsmodels.sourceforge.net/0.6.0/generated/statsmodels.distributions.empirical_distribution.ECDF.html
http://statsmodels.sourceforge.net/0.6.0/generated/statsmodels.distributions.empirical_distribution.ECDF.html
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Exploring extreme values
Worldwide, there are almost a million dams, roughly 5 percent of which are higher than 15 
m. A civil engineer designing a dam will have to consider many factors, including rainfall. Let's 
assume, for the sake of simplicity, that the engineer wants to know the cumulative annual 
rainfall. We can also take monthly maximums and fit those to a generalized extreme value 
(GEV) distribution. Using this distribution, we can then bootstrap to get our estimate. Instead,  
I select values that are above the 95th percentile in this recipe.

The GEV distribution is implemented in scipy.stats and is a mixture of the Gumbel, 
Frechet, and Weibull distributions. The following equations describe the cumulative 
distribution function (3.11) and a related constraint (3.12):
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In these equations, μ is the location parameter, σ is the scale parameter, and ξ is the  
shape parameter.

How to do it...
Let's analyze the data using the GEV distribution:

1.	 The imports are as follows:
from scipy.stats.distributions import genextreme
import matplotlib.pyplot as plt
import dautil as dl
import numpy as np
from IPython.display import HTML

2.	 Define the following function to sample the GEV distribution:
def run_sims(nsims):
    sums = []
    
    np.random.seed(19)

    for i in range(nsims):
        for j in range(len(years)):
            sample_sum = dist.rvs(shape, loc, scale, size=365).
sum()
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            sums.append(sample_sum)

    a = np.array(sums)
    low, high = dl.stats.ci(a)

    return a, low, high

3.	 Load the data and select the extreme values:
rain = dl.data.Weather.load()['RAIN'].dropna()
annual_sums = rain.resample('A', how=np.sum)
years = np.unique(rain.index.year)
limit = np.percentile(rain, 95)
rain = rain[rain > limit]
dist = dl.stats.Distribution(rain, genextreme)

4.	 Fit the extreme values to the GEV distribution:
shape, loc, scale = dist.fit()
table = dl.report.DFBuilder(['shape', 'loc', 'scale'])
table.row([shape, loc, scale])
dl.options.set_pd_options()
html_builder = dl.report.HTMLBuilder()
html_builder.h1('Exploring Extreme Values')
html_builder.h2('Distribution Parameters')
html_builder.add_df(table.build())

5.	 Get statistics on the fit residuals:
pdf = dist.pdf(shape, loc, scale)
html_builder.h2('Residuals of the Fit')
residuals = dist.describe_residuals()
html_builder.add(residuals.to_html())

6.	 Get the fit metrics:
table2 = dl.report.DFBuilder(['Mean_AD', 'RMSE'])
table2.row([dist.mean_ad(), dist.rmse()])
html_builder.h2('Fit Metrics')
html_builder.add_df(table2.build())
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7.	 Plot the data and the result of the bootstrap:
sp = dl.plotting.Subplotter(2, 2, context)

sp.ax.hist(annual_sums, normed=True, bins=dl.stats.sqrt_
bins(annual_sums))
sp.label()
set_labels(sp.ax)

sp.next_ax()
sp.label()
sp.ax.set_xlim([5000, 10000])
sims = []
nsims = [25, 50, 100, 200]

for n in nsims:
    sims.append(run_sims(n))

sims = np.array(sims)
sp.ax.hist(sims[2][0], normed=True, bins=dl.stats.sqrt_
bins(sims[2][0]))
set_labels(sp.ax)

sp.next_ax()
sp.label()
sp.ax.set_xlim([10, 40])
sp.ax.hist(rain, bins=dist.nbins, normed=True, label='Rain')
sp.ax.plot(dist.x, pdf, label='PDF')
set_labels(sp.ax)
sp.ax.legend(loc='best')

sp.next_ax()
sp.ax.plot(nsims, sims.T[1], 'o', label='2.5 percentile')
sp.ax.plot(nsims, sims.T[2], 'x', label='97.5 percentile')
sp.ax.legend(loc='center')
sp.label(ylabel_params=dl.data.Weather.get_header('RAIN'))

plt.tight_layout()
HTML(html_builder.html)
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Refer to the following screenshot for the end result (see the extreme_values.ipynb file in 
this book's code bundle):

See also
ff The Wikipedia page on the GEV distribution at https://en.wikipedia.org/

wiki/Generalized_extreme_value_distribution (retrieved August 2015).

https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
https://en.wikipedia.org/wiki/Generalized_extreme_value_distribution
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Correlating variables with Pearson's 
correlation

Pearson's r, named after its developer Karl Pearson (1896), measures linear correlation 
between two variables. Let's look at the following equations:
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(3.13) defines the coefficient and (3.14) describes the Fisher transformation used to 
compute confidence intervals. (3.15) gives the standard error of the correlation. (3.16) is 
about the z-score of the Fisher transformed correlation. If we assume a normal distribution, 
we can use the z-score to compute confidence intervals. Alternatively, we can bootstrap by 
resampling pairs of values with replacement. Also, the scipy.stats.pearsonr() function 
returns a p-value, which (according to the documentation) is not accurate for samples of 
less than 500 values. Unfortunately, we are going to use such a small sample in this recipe. 
We are going to correlate carbon dioxide emission data from the Worldbank with related 
temperature data for the Netherlands.

How to do it...
In this recipe, we will compute the correlation coefficient and estimate confidence intervals 
using z-scores and bootstrapping with the following steps:

1.	 The imports are as follows:
import dautil as dl
import pandas as pd
from scipy import stats
import numpy as np
import math
from sklearn.utils import check_random_state
import matplotlib.pyplot as plt
from IPython.display import HTML
from IPython.display import display
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2.	 Download the data and set up appropriate data structures:
wb = dl.data.Worldbank()
indicator = wb.get_name('co2')
co2 = wb.download(country='NL', indicator=indicator, start=1900,
                  end=2014)
co2.index = [int(year) for year in co2.index.get_level_values(1)]
temp = pd.DataFrame(dl.data.Weather.load()['TEMP'].resample('A'))
temp.index = temp.index.year
temp.index.name = 'year'
df = pd.merge(co2, temp, left_index=True, right_index=True).
dropna()

3.	 Compute the correlation as follows:
stats_corr = stats.pearsonr(df[indicator].values, df['TEMP'].
values)
print('Correlation={0:.4g}, p-value={1:.4g}'.format(stats_corr[0], 
stats_corr[1]))

4.	 Calculate the confidence interval with the Fisher transform:
z = np.arctanh(stats_corr[0])
n = len(df.index)
se = 1/(math.sqrt(n - 3))
ci = z + np.array([-1, 1]) * se * stats.norm.ppf((1 + 0.95)/2)

ci = np.tanh(ci)
dl.options.set_pd_options()
ci_table = dl.report.DFBuilder(['Low', 'High'])
ci_table.row([ci[0], ci[1]])

5.	 Bootstrap by resampling pairs with replacement:
rs = check_random_state(34)

ranges = []

for j in range(200):
    corrs = []

    for i in range(100):
        indices = rs.choice(n, size=n)
        pairs = df.values
        gen_pairs = pairs[indices]
        corrs.append(stats.pearsonr(gen_pairs.T[0], gen_
pairs.T[1])[0])

    ranges.append(dl.stats.ci(corrs))
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ranges = np.array(ranges)
bootstrap_ci = dl.stats.ci(corrs)
ci_table.row([bootstrap_ci[0], bootstrap_ci[1]])
ci_table = ci_table.build(index=['Formula', 'Bootstrap'])

6.	 Plot the results and produce a report:
x = np.arange(len(ranges)) * 100
plt.plot(x, ranges.T[0], label='Low')
plt.plot(x, ranges.T[1], label='High')
plt.plot(x, stats_corr[0] * np.ones_like(x), label='SciPy 
estimate')
plt.ylabel('Pearson Correlation')
plt.xlabel('Number of bootstraps')
plt.title('Bootstrapped Pearson Correlation')
plt.legend(loc='best')
result = dl.report.HTMLBuilder()
result.h1('Pearson Correlation Confidence intervals')
result.h2('Confidence Intervals')
result.add(ci_table.to_html())
HTML(result.html)

Refer to the following screenshot for the end result (see the correlating_pearson.ipynb 
file in this book's code bundle):
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See also
ff The related SciPy documentation at http://docs.scipy.org/doc/scipy/

reference/generated/scipy.stats.pearsonr.html#scipy.stats.
pearsonr (retrieved August 2015).

Correlating variables with the Spearman 
rank correlation

The Spearman rank correlation uses ranks to correlate two variables with the Pearson 
Correlation. Ranks are the positions of values in sorted order. Items with equal values get 
a rank, which is the average of their positions. For instance, if we have two items of equal 
value assigned position 2 and 3, the rank is 2.5 for both items. Have a look at the following 
equations:
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In these equations, n is the sample size. (3.17) shows how the correlation is calculated. 
(3.19) gives the standard error. (3.20) is about the z-score, which we assume to be normally 
distributed. F(r) is here the same as in (3.14), since it is the same correlation but applied  
to ranks.

How to do it...
In this recipe we calculate the Spearman correlation between wind speed and temperature 
aggregated by the day of the year and the corresponding confidence interval. Then, we display 
the correlation matrix for all the weather data. The steps are as follows:

1.	 The imports are as follows:
import dautil as dl
from scipy import stats
import numpy as np
import math

http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html#scipy.stats.pearsonr
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html#scipy.stats.pearsonr
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html#scipy.stats.pearsonr
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import seaborn as sns
import matplotlib.pyplot as plt
from IPython.html import widgets
from IPython.display import display
from IPython.display import HTML

2.	 Define the following function to compute the confidence interval:
def get_ci(n, corr):
    z = math.sqrt((n - 3)/1.06) * np.arctanh(corr)
    se = 0.6325/(math.sqrt(n - 1))
    ci = z + np.array([-1, 1]) * se * stats.norm.ppf((1 + 0.95)/2)

    return np.tanh(ci)

3.	 Load the data and display widgets so that you can correlate a different pair if you 
want:
df = dl.data.Weather.load().dropna()
df = dl.ts.groupby_yday(df).mean()

drop1 = widgets.Dropdown(options=dl.data.Weather.get_headers(), 
                         selected_label='TEMP', 
description='Variable 1')
drop2 = widgets.Dropdown(options=dl.data.Weather.get_headers(), 
                         selected_label='WIND_SPEED', 
description='Variable 2')
display(drop1)
display(drop2)

4.	 Compute the Spearman rank correlation with SciPy:
var1 = df[drop1.value].values
var2 = df[drop2.value].values
stats_corr = stats.spearmanr(var1, var2)
dl.options.set_pd_options()
html_builder = dl.report.HTMLBuilder()
html_builder.h1('Spearman Correlation between {0} and {1}'.format(
    dl.data.Weather.get_header(drop1.value), dl.data.Weather.get_
header(drop2.value)))
html_builder.h2('scipy.stats.spearmanr()')
dfb = dl.report.DFBuilder(['Correlation', 'p-value'])
dfb.row([stats_corr[0], stats_corr[1]])
html_builder.add_df(dfb.build())



Statistical Data Analysis and Probability

96

5.	 Compute the confidence interval as follows:
n = len(df.index)
ci = get_ci(n, stats_corr)
html_builder.h2('Confidence intervale')
dfb = dl.report.DFBuilder(['2.5 percentile', '97.5 percentile'])
dfb.row(ci)
html_builder.add_df(dfb.build())

6.	 Display the correlation matrix as a Seaborn heatmap:
corr = df.corr(method='spearman')

%matplotlib inline
plt.title('Spearman Correlation Matrix')
sns.heatmap(corr)
HTML(html_builder.html)

Refer to the following screenshot for the end result (see the correlating_spearman.
ipynb file in this book's code bundle):
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See also
ff The Spearman rank correlation Wikipedia page at https://en.wikipedia.org/

wiki/Spearman%27s_rank_correlation_coefficient (retrieved August 
2015)

Correlating a binary and a continuous 
variable with the point biserial correlation

The point-biserial correlation correlates a binary variable Y and a continuous variable X. The 
coefficient is calculated as follows:
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The subscripts in (3.21) correspond to the two groups of the binary variable. M1 is the mean 
of X for values corresponding to group 1 of Y. M2 is the mean of X for values corresponding to 
group 0 of Y.

In this recipe, the binary variable we will use is rain or no rain. We will correlate this variable 
with temperature.

How to do it...
We will calculate the correlation with the scipy.stats.pointbiserialr() function. We 
will also compute the rolling correlation using a 2 year window with the np.roll() function. 
The steps are as follows:

1.	 The imports are as follows:
import dautil as dl
from scipy import stats
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from IPython.display import HTML

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
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2.	 Load the data and correlate the two relevant arrays:
df = dl.data.Weather.load().dropna()
df['RAIN'] = df['RAIN'] > 0

stats_corr = stats.pointbiserialr(df['RAIN'].values, df['TEMP'].
values)

3.	 Compute the 2 year rolling correlation as follows:
N = 2 * 365
corrs = []

for i in range(len(df.index) - N):
    x = np.roll(df['RAIN'].values, i)[:N]
    y = np.roll(df['TEMP'].values, i)[:N]
    corrs.append(stats.pointbiserialr(x, y)[0])

corrs = pd.DataFrame(corrs,
                     index=df.index[N:],
                     columns=['Correlation']).resample('A')

4.	 Plot the results with the following code:
plt.plot(corrs.index.values, corrs.values)
plt.hlines(stats_corr[0], corrs.index.values[0], corrs.index.
values[-1],
           label='Correlation using the whole data set')
plt.title('Rolling Point-biserial Correlation of Rain and 
Temperature with a 2 Year Window')
plt.xlabel('Year')
plt.ylabel('Correlation')
plt.legend(loc='best')
HTML(dl.report.HTMLBuilder().watermark())

Refer to the following screenshot for the end result (see correlating_pointbiserial.
ipynb file in this book's code bundle):
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See also
ff The relevant SciPy documentation at http://docs.scipy.org/doc/scipy/

reference/generated/scipy.stats.pointbiserialr.html#scipy.
stats.pointbiserialr (retrieved August 2015).

Evaluating relations between variables with 
ANOVA

Analysis of variance (ANOVA) is a statistical data analysis method invented by statistician 
Ronald Fisher. This method partitions data of a continuous variable using the values of one 
or more corresponding categorical variables to analyze variance. ANOVA is a form of linear 
modeling. If we are modeling with one categorical variable, we speak of one-way ANOVA. 
In this recipe, we will use two categorical variables so we have two-way ANOVA. In two-way 
ANOVA, we create a contingency table—a table containing counts for all combinations of the 
two categorical variables (we will see a contingency table example soon). The linear model is 
then given by the equation:

( )3.23 ij i j ijµ µ α β γ= + + +

http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pointbiserialr.html#scipy.stats.pointbiserialr
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pointbiserialr.html#scipy.stats.pointbiserialr
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pointbiserialr.html#scipy.stats.pointbiserialr
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This is an additive model where μij is the mean of the continuous variable corresponding to 
one cell of the contingency table, μ is the mean for the whole data set, αi is the contribution of 
the first categorical variable, βj is the contribution of the second categorical variable, and ɣij is 
a cross-term. We will apply this model to weather data.

How to do it...
The following steps apply two-way ANOVA to wind speed as continuous variable, rain as a 
binary variable, and wind direction as categorical variable:

1.	 The imports are as follows:
from statsmodels.formula.api import ols
import dautil as dl
from statsmodels.stats.anova import anova_lm
import seaborn as sns
import matplotlib.pyplot as plt
from IPython.display import HTML

2.	 Load the data and fit the model with statsmodels:
df = dl.data.Weather.load().dropna()
df['RAIN'] = df['RAIN'] > 0
formula = 'WIND_SPEED ~ C(RAIN) + C(WIND_DIR)'
lm = ols(formula, df).fit()
hb = dl.HTMLBuilder()
hb.h1('ANOVA Applied to Weather Data')
hb.h2('ANOVA results')
hb.add_df(anova_lm(lm), index=True)

3.	 Display a truncated contingency table and visualize the data with Seaborn:
df['WIND_DIR'] = dl.data.Weather.categorize_wind_dir(df)
hb.h2('Truncated Contingency table')
hb.add_df(df.groupby([df['RAIN'], df['WIND_DIR']]).count().
head(3),index=True)

sns.pointplot(y='WIND_SPEED', x='WIND_DIR',
              hue='RAIN', data=df[['WIND_SPEED', 'RAIN', 'WIND_
DIR']])
HTML(hb.html)
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Refer to the following screenshot for the end result (see anova.ipynb file in this book's  
code bundle):

See also
ff The Wikipedia page for two-way ANOVA at https://en.wikipedia.org/wiki/

Two-way_analysis_of_variance (retrieved August 2015)

ff The Wikipedia page about the contingency table is https://en.wikipedia.org/
wiki/Contingency_table (retrieved August 2015)

https://en.wikipedia.org/wiki/Two-way_analysis_of_variance
https://en.wikipedia.org/wiki/Two-way_analysis_of_variance
https://en.wikipedia.org/wiki/Contingency_table
https://en.wikipedia.org/wiki/Contingency_table
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4
Dealing with Data and 

Numerical Issues

The recipes in this chapter are as follows:

ff Clipping and filtering outliers
ff Winsorizing data
ff Measuring central tendency of noisy data
ff Normalizing with the Box-Cox transformation
ff Transforming data with the power ladder
ff Transforming data with logarithms
ff Rebinning data
ff Applying logit() to transform proportions
ff Fitting a robust linear model
ff Taking variance into account with weighted least squares
ff Using arbitrary precision for optimization
ff Using arbitrary precision for linear algebra

Introduction
In the real world, data rarely matches textbook definitions and examples. We have to deal with 
issues such as faulty hardware, uncooperative customers, and disgruntled colleagues. It is 
difficult to predict what kind of issues you will run into, but it is safe to assume that they will 
be plentiful and challenging. In this chapter, I will sketch some common approaches to deal 
with noisy data, which are based more on rules of thumb than strict science. Luckily, the trial 
and error part of data analysis is limited.
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Most of this chapter is about outlier management. Outliers are values that we consider to be 
abnormal. Of course, this is not the only issue that you will encounter, but it is a sneaky one. A 
common issue is that of missing or invalid values, so I will briefly mention masked arrays and 
pandas features such as the dropna() function, which I have used throughout this book.

I have also written two recipes about using mpmath for arbitrary precision calculations. I don't 
recommend using mpmath unless you really have to because of the performance penalty you 
have to pay. Usually we can work around numerical issues, so arbitrary precision libraries are 
rarely needed.

Clipping and filtering outliers
Outliers are a common issue in data analysis. Although an exact definition of outliers doesn't 
exist, we know that outliers can influence means and regression results. Outliers are values 
that are anomalous. Usually, outliers are caused by a measurement error, but the outliers are 
sometimes real. In the second case, we may be dealing with two or more types of data related 
to different phenomena.

The data for this recipe is described at https://vincentarelbundock.github.io/
Rdatasets/doc/robustbase/starsCYG.html (retrieved August 2015). It consists of 
logarithmic effective temperature and logarithmic light intensity for 47 stars in a certain star 
cluster. Any astronomers reading this paragraph will know the Hertzsprung-Russell diagram. 
In data analysis terms, the diagram is a scatter plot, but for astronomers, it is of course more 
than that. The Hertzsprung Russell diagram was defined around 1910 and features a diagonal 
line (not entirely straight) called the main sequence. Most stars in our data set should be on 
the main sequence with four outliers in the upper-left corner. These outliers are classified as 
giants.

We have many strategies to deal with outliers. In this recipe, we will use the two simplest 
strategies: clipping with the NumPy clip() function and completely removing the outliers. 
For this example, I define outliers as values 1.5 interquartile ranges removed from the box 
defined by the 1st and 3rd quartile.

How to do it...
The following steps show how to clip and filter outliers:

1.	 The imports are as follows:
import statsmodels.api as sm
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import dautil as dl
from IPython.display import HTML

https://vincentarelbundock.github.io/Rdatasets/doc/robustbase/starsCYG.html
https://vincentarelbundock.github.io/Rdatasets/doc/robustbase/starsCYG.html
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2.	 Define the following function to filter outliers:
def filter_outliers(a):
    b = a.copy()
    bmin, bmax = dl.stats.outliers(b)
    b[bmin > b] = np.nan
    b[b > bmax] = np.nan

    return b

3.	 Load and clip outliers as follows:
starsCYG = sm.datasets.get_rdataset("starsCYG", "robustbase", 
cache=True).data

clipped = starsCYG.apply(dl.stats.clip_outliers)

4.	 Filter outliers as follows:
filtered = starsCYG.copy()
filtered['log.Te'] = filter_outliers(filtered['log.Te'].values)
filtered['log.light'] = filter_outliers(filtered['log.light'].
values)
filtered.dropna()

5.	 Plot the result with the following code:
sp = dl.plotting.Subplotter(3, 1, context)
sp.label()
sns.regplot(x='log.Te', y='log.light', data=starsCYG, ax=sp.ax)
sp.label(advance=True)
sns.regplot(x='log.Te', y='log.light', data=clipped, ax=sp.ax)
sp.label(advance=True)
sns.regplot(x='log.Te', y='log.light', data=filtered, ax=sp.ax)
plt.tight_layout()
HTML(dl.report.HTMLBuilder().watermark())
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Refer to the following screenshot for the end result (refer to the outliers.ipynb file in this 
book's code bundle):

See also
ff The NumPy clip() function documented at https://docs.scipy.org/doc/

numpy/reference/generated/numpy.clip.html#numpy.clip (retrieved 
August 2015)

ff You can read more about the Hertzsprung-Russell diagram at https://
en.wikipedia.org/wiki/Hertzsprung%E2%80%93Russell_diagram 
(retrieved August 2015)

https://docs.scipy.org/doc/numpy/reference/generated/numpy.clip.html#numpy.clip
https://docs.scipy.org/doc/numpy/reference/generated/numpy.clip.html#numpy.clip
https://en.wikipedia.org/wiki/Hertzsprung%E2%80%93Russell_diagram
https://en.wikipedia.org/wiki/Hertzsprung%E2%80%93Russell_diagram
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Winsorizing data
Winsorizing is another technique to deal with outliers and is named after Charles Winsor. In 
effect, Winsorization clips outliers to given percentiles in a symmetric fashion. For instance, 
we can clip to the 5th and 95th percentile. SciPy has a winsorize() function, which 
performs this procedure. The data for this recipe is the same as that for the Clipping and 
filtering outliers recipe.

How to do it...
Winsorize the data with the following procedure:

1.	 The imports are as follows:
rom scipy.stats.mstats import winsorize
import statsmodels.api as sm
import seaborn as sns
import matplotlib.pyplot as plt
import dautil as dl
from IPython.display import HTML

2.	 Load and winsorize the data for the effective temperature (limit is set to 15%):
starsCYG = sm.datasets.get_rdataset("starsCYG", "robustbase", 
cache=True).data
limit = 0.15
winsorized_x = starsCYG.copy()
winsorized_x['log.Te'] = winsorize(starsCYG['log.Te'], 
limits=limit)

3.	 Winsorize the light intensity as follows:
winsorized_y = starsCYG.copy()
winsorized_y['log.light'] = winsorize(starsCYG['log.light'], 
limits=limit)
winsorized_xy = starsCYG.apply(winsorize, limits=[limit, limit])

4.	 Plot the Hertzsprung-Russell diagram with regression lines (not part of the usual 
astronomical diagram):
sp = dl.plotting.Subplotter(2, 2, context)
sp.label()
sns.regplot(x='log.Te', y='log.light', data=starsCYG, ax=sp.ax)

sp.label(advance=True)
sns.regplot(x='log.Te', y='log.light', data=winsorized_x, ax=sp.
ax)
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sp.label(advance=True)
sns.regplot(x='log.Te', y='log.light', data=winsorized_y, ax=sp.
ax)

sp.label(advance=True)
sns.regplot(x='log.Te', y='log.light', data=winsorized_xy, ax=sp.
ax)
plt.tight_layout()
HTML(dl.report.HTMLBuilder().watermark())

Refer to the following screenshot for the end result (refer to the winsorising_data.ipynb 
file in this book's code bundle):

See also
ff The relevant Wikipedia page at https://en.wikipedia.org/wiki/

Winsorising (retrieved August 2015)

https://en.wikipedia.org/wiki/Winsorising
https://en.wikipedia.org/wiki/Winsorising
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Measuring central tendency of noisy data
We can measure central tendency with the mean and median. These measures use all the 
data available. It is a generally accepted idea to get rid of outliers by discarding data on the 
higher and lower end of a data set. The truncated mean or trimmed mean, and derivatives 
of it such as the interquartile mean (IQM) and trimean, use this idea too. Take a look at the 
following equations:
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The truncated mean discards the data at given percentiles—for instance, from the lowest 
value to the 5th percentile and from the 95th percentile to the highest value. The trimean 
(4.1) is a weighted average of the median, first quartile, and third quartile. For the IQM (4.2), 
we discard the lowest and highest quartile of the data, so it is a special case of the truncated 
mean. We will calculate these measures with the SciPy tmean() and trima() functions.

How to do it...
We will take a look at the central tendency for varying levels of truncation with the following 
steps:

1.	 The imports are as follows:
import matplotlib.pyplot as plt
from scipy.stats import tmean
from scipy.stats.mstats import trima
import numpy as np
import dautil as dl
import seaborn as sns
from IPython.display import HTML

context = dl.nb.Context('central_tendency')

2.	 Define the following function to calculate the interquartile mean:
def iqm(a):
    return truncated_mean(a, 25)



Dealing with Data and Numerical Issues

110

3.	 Define the following function to plot distributions:
def plotdists(var, ax):
    displot_label = 'From {0} to {1} percentiles'
    cyc = dl.plotting.Cycler()

    for i in range(1, 9, 3):
        limits = dl.stats.outliers(var, method='percentiles', 
                               percentiles=(i, 100 - i))
        truncated = trima(var, limits=limits).compressed()
        sns.distplot(truncated, ax=ax, color=cyc.color(),
                     hist_kws={'histtype': 'stepfilled', 'alpha': 
1/i,
                               'linewidth': cyc.lw()},
                     label=displot_label.format(i, 100 - i))

4.	 Define the following function to compute the truncated mean:
def truncated_mean(a, percentile):
    limits = dl.stats.outliers(a, method='percentiles', 
                               percentiles=(percentile, 100 - 
percentile))
    
    return tmean(a, limits=limits)

5.	 Load the data and calculate means as follows:
df = dl.data.Weather.load().resample('M').dropna()
x = range(9)
temp_means = [truncated_mean(df['TEMP'], i) for i in x]
ws_means = [truncated_mean(df['WIND_SPEED'], i) for i in x]

6.	 Plot the means and distributions with the following code:
sp = dl.plotting.Subplotter(2, 2, context)
cp = dl.plotting.CyclePlotter(sp.ax)
cp.plot(x, temp_means, label='Truncated mean')
cp.plot(x, dl.stats.trimean(df['TEMP']) * np.ones_like(x), 
label='Trimean')
cp.plot(x, iqm(df['TEMP']) * np.ones_like(x), label='IQM')
sp.label(ylabel_params=dl.data.Weather.get_header('TEMP'))

cp = dl.plotting.CyclePlotter(sp.next_ax())
cp.plot(x, ws_means, label='Truncated mean')
cp.plot(x, dl.stats.trimean(df['WIND_SPEED']) * np.ones_like(x),
        label='Trimean')
cp.plot(x, iqm(df['WIND_SPEED']) * np.ones_like(x), label='IQM')
sp.label(ylabel_params=dl.data.Weather.get_header('WIND_SPEED'))

plotdists(df['TEMP'], sp.next_ax())



Chapter 4

111

sp.label(xlabel_params=dl.data.Weather.get_header('TEMP'))

plotdists(df['WIND_SPEED'], sp.next_ax())
sp.label(xlabel_params=dl.data.Weather.get_header('WIND_SPEED'))
plt.tight_layout()
HTML(dl.report.HTMLBuilder().watermark())

Refer to the following screenshot for the end result (refer to the central_tendency.ipynb 
file in this book's code bundle):

See also
ff The SciPy documentation for trima()at https://docs.scipy.org/doc/

scipy/reference/generated/scipy.stats.mstats.trima.html (retrieved 
August 2015)

ff The SciPy documentation for tmean()at https://docs.scipy.org/doc/
scipy/reference/generated/scipy.stats.tmean.html#scipy.stats.
tmean (retrieved August 2015)

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.trima.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mstats.trima.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tmean.html#scipy.stats.tmean
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tmean.html#scipy.stats.tmean
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.tmean.html#scipy.stats.tmean
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Normalizing with the Box-Cox 
transformation

Data that doesn't follow a known distribution, such as the normal distribution, is often difficult 
to manage. A popular strategy to get control of the data is to apply the Box-Cox transformation. 
It is given by the following equation:
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The scipy.stats.boxcox() function can apply the transformation for positive data. We 
will use the same data as in the Clipping and filtering outliers recipe. With Q-Q plots, we will 
show that the Box-Cox transformation does indeed make the data appear more normal.

How to do it...
The following steps show how to normalize data with the Box-Cox transformation:

1.	 The imports are as follows:
import statsmodels.api as sm
import matplotlib.pyplot as plt
from scipy.stats import boxcox
import seaborn as sns
import dautil as dl
from IPython.display import HTML

2.	 Load the data and transform it as follows:
context = dl.nb.Context('normalizing_boxcox')

starsCYG = sm.datasets.get_rdataset("starsCYG", "robustbase", 
cache=True).data

var = 'log.Te'

# Data must be positive
transformed, _ = boxcox(starsCYG[var])
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3.	 Display the Q-Q plots and the distribution plots as follows:
sp = dl.plotting.Subplotter(2, 2, context)
sp.label()
sm.qqplot(starsCYG[var], fit=True, line='s', ax=sp.ax)

sp.label(advance=True)
sm.qqplot(transformed, fit=True, line='s', ax=sp.ax)

sp.label(advance=True)
sns.distplot(starsCYG[var], ax=sp.ax)

sp.label(advance=True)
sns.distplot(transformed, ax=sp.ax)                                       
plt.tight_layout()
HTML(dl.report.HTMLBuilder().watermark())

Refer to the following screenshot for the end result (refer to the normalizing_boxcox.
ipynb file in this book's code bundle):
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How it works
The Q-Q plots, in the previous screenshot, graph theoretical quantiles for the normal 
distribution against the quantiles of the actual data. To help evaluate conformance to the 
normal distribution, I displayed a line that should correspond with perfectly normal data. The 
more the data fits the line, the more normal it is. As you can see, the transformed data fits the 
line better and is, therefore, more normal. The distribution plots should help you to confirm this.

See also
ff The relevant Wikipedia page at https://en.wikipedia.org/wiki/Power_

transform (retrieved August 2015)

ff G.E.P. Box and D.R. Cox, An Analysis of Transformations, Journal of the Royal 
Statistical Society B, 26, 211-252 (1964).

Transforming data with the power ladder
Linear relations are commonplace in science and data analysis. Obviously, linear models 
are easier to understand than non-linear models. So historically, tools for linear models were 
developed first. In certain cases, it pays to linearize (make linear) data to make analysis 
simpler. A simple strategy that sometimes works is to square or cube one or more variables. 
Similarly, we can transform the data down an imaginary power ladder by taking the square or 
cube root.

In this recipe, we will use data from the Duncan dataset as described in https://
vincentarelbundock.github.io/Rdatasets/doc/car/Duncan.html (retrieved 
August 2015). The data was gathered around 1961 and is about 45 occupations with four 
columns—type, income, education, and prestige. We will take a look at income and prestige. 
These variables seem to be linked by a cubic polynomial, so we can take the cube root 
of income or the cube of prestige. To check the result, we will visualize the residuals of 
regression. The expectation is that the residuals are randomly distributed, which means  
that we don't expect them to follow a recognizable pattern.

https://en.wikipedia.org/wiki/Power_transform
https://en.wikipedia.org/wiki/Power_transform
https://vincentarelbundock.github.io/Rdatasets/doc/car/Duncan.html
https://vincentarelbundock.github.io/Rdatasets/doc/car/Duncan.html
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How to do it...
In the following steps, I will demonstrate the basic data transformation:

1.	 The imports are as follows:
import matplotlib.pyplot as plt
import numpy as np
import dautil as dl
import seaborn as sns
import statsmodels.api as sm
from IPython.display import HTML

2.	 Load and transform the data as follows:
df = sm.datasets.get_rdataset("Duncan", "car", cache=True).data
transformed = df.copy()
transformed['income'] = np.power(transformed['income'], 1.0/3)

3.	 Plot the original data with a Seaborn regression plot (cubic polynomial) as follows:
sp = dl.plotting.Subplotter(2, 2, context)
sp.label()
sns.regplot(x='income', y='prestige', data=df, order=3, ax=sp.ax)

4.	 Plot the transformed data with the following lines:
sp.label(advance=True)
sns.regplot(x='income', y='prestige', data=transformed, ax=sp.ax)

5.	 Plot the residuals plot for the cubic polynomial:
sp.label(advance=True)
sns.residplot(x='income', y='prestige', data=df, order=3, ax=sp.
ax)

6.	 Plot the residuals plot for the transformed data as follows:
sp.label(advance=True)
sp.ax.set_xlim([1, 5])
sns.residplot(x='income', y='prestige', data=transformed, ax=sp.
ax)
plt.tight_layout()
HTML(dl.report.HTMLBuilder().watermark())
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Refer to the following screenshot for the end result (refer to the transforming_up.ipynb 
file in this book's code bundle):

Transforming data with logarithms
When data varies by orders of magnitude, transforming the data with logarithms is an obvious 
strategy. In my experience, it is less common to do the opposite transformation using an 
exponential function. Usually when exploring, we visualize a log-log or semi-log scatter plot  
of paired variables.

To demonstrate this transformation, we will use the Worldbank data for infant mortality rate 
per 1000 livebirths and Gross Domestic Product (GDP) per capita for the available countries. 
If we apply the logarithm of base 10 to both variables, the slope of the line we get by fitting 
the data has a useful property. A one percent increase in one variable corresponds to a 
percentage change given by the slope of the other variable.
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How to do it...
Transform the data using logarithms with the following procedure:

1.	 The imports are as follows:
import dautil as dl
import matplotlib.pyplot as plt
import numpy as np
from IPython.display import HTML

2.	 Download the data for 2010 with the following code:
wb = dl.data.Worldbank()
countries = wb.get_countries()[['name', 'iso2c']]
inf_mort = wb.get_name('inf_mort')
gdp_pcap = wb.get_name('gdp_pcap')
df = wb.download(country=countries['iso2c'],
                 indicator=[inf_mort, gdp_pcap],
                 start=2010, end=2010).dropna()

3.	 Apply the log transform with the following snippet:
loglog = df.applymap(np.log10)
x = loglog[gdp_pcap]
y = loglog[inf_mort]

4.	 Plot the data before and after the transformation:
sp = dl.plotting.Subplotter(2, 1, context)
xvar = 'GDP per capita'
sp.label(xlabel_params=xvar)
sp.ax.set_ylim([0, 200])
sp.ax.scatter(df[gdp_pcap], df[inf_mort])

sp.next_ax()
sp.ax.scatter(x, y, label='Transformed')
dl.plotting.plot_polyfit(sp.ax, x, y)
sp.label(xlabel_params=xvar)
plt.tight_layout()
HTML(dl.report.HTMLBuilder().watermark())
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Refer to the following screenshot for the end result (refer to the transforming_down.
ipynb file in this book's code bundle):

Rebinning data
Often, the data we have is not structured the way we want to use it. A structuring technique we 
can use is called (statistical) data binning or bucketing. This strategy replaces values within 
an interval (a bin) with one representative value. In the process, we may lose information; 
however, we gain better control over the data and efficiency.

In the weather dataset, we have wind direction in degrees and wind speed in m/s, which  
can be represented in a different way. In this recipe, I chose to present wind direction with 
cardinal directions (north, south, and so on). For the wind speed, I used the Beaufort scale 
(visit https://en.wikipedia.org/wiki/Beaufort_scale).

https://en.wikipedia.org/wiki/Beaufort_scale
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How to do it...
Follow these instructions to rebin the data:

1.	 The imports are as follows:
import dautil as dl
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from IPython.display import HTML

2.	 Load and rebin the data as follows (wind direction is in degree 0-360; we rebin to 
cardinal directions such as north, southwest, and so on):
df = dl.data.Weather.load()[['WIND_SPEED', 'WIND_DIR']].dropna()
categorized = df.copy()
categorized['WIND_DIR'] = dl.data.Weather.categorize_wind_dir(df)
categorized['WIND_SPEED'] = dl.data.Weather.beaufort_scale(df)

3.	 Show distributions and countplots with the following code:
sp = dl.plotting.Subplotter(2, 2, context)
sns.distplot(df['WIND_SPEED'], ax=sp.ax)
sp.label(xlabel_params=dl.data.Weather.get_header('WIND_SPEED'))

sns.distplot(df['WIND_DIR'], ax=sp.next_ax())
sp.label(xlabel_params=dl.data.Weather.get_header('WIND_DIR'))

sns.countplot(x='WIND_SPEED', data=categorized, ax=sp.next_ax())
sp.label()

sns.countplot(x='WIND_DIR', data=categorized, ax=sp.next_ax())
sp.label()
plt.tight_layout()
HTML(dl.report.HTMLBuilder().watermark())
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Refer to the following screenshot for the end result (refer to the rebinning_data.ipynb file 
in this book's code bundle):

Applying logit() to transform proportions
We can transform proportions or ratios with the SciPy logit() function. The result should be 
a more Gaussian distribution. This function is defined by the following equation:

( ) ( ) ( ) ( ) 14.4 logit log log log 1 log 1
1
pp p p
p p

   
= = − − = − −   −   

As you can see in equation (4.4), the logit is the logarithm of the odds. What we want to 
achieve with this transformation is getting a more symmetric distribution—a skew close to 
zero. As the proportions approach zero and one, the logit asymptotically approaches minus 
infinity and infinity, so we have to be careful in those cases.
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As an example of a proportion, we will take the monthly proportions of rainy days. We get these 
proportions by turning rain amounts into a binary variable and then averaging over each month.

How to do it...
Transform the ratios by following this guide:

1.	 The imports are as follows:
import dautil as dl
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import math
import statsmodels.api as sm
from scipy.special import logit
from IPython.display import HTML

2.	 Load the data and transform it with the following code:
rain = dl.data.Weather.load()['RAIN'].dropna()
rain = rain > 0
rain = rain.resample('M').dropna()
transformed = rain.apply(logit)
transformed = dl.data.dropinf(transformed.values)

3.	 Plot the result of the transformation with distribution plots and Q-Q plots:
sp = dl.plotting.Subplotter(2, 2, context)
sns.distplot(rain, ax=sp.ax)
sp.label()

sp.label(advance=True)
sns.distplot(transformed, ax=sp.ax)

sp.label(advance=True)
sm.qqplot(rain, line='s', ax=sp.ax)

sp.label(advance=True)
sm.qqplot(transformed, line='s', ax=sp.ax)
plt.tight_layout()
HTML(dl.report.HTMLBuilder().watermark())
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Refer to the following screenshot for the end result (refer to the transforming_ratios.
ipynb file in this book's code bundle):

Fitting a robust linear model
Robust regression is designed to deal better with outliers in data than ordinary regression. 
This type of regression uses special robust estimators, which are also supported by 
statsmodels. Obviously, there is no best estimator, so the choice of estimator depends  
on the data and the model.

In this recipe, we will fit data about annual sunspot counts available in statsmodels. We will 
define a simple model where the current count depends linearly on the previous value. To 
demonstrate the effect of outliers, I added a pretty big value and we will compare the robust 
regression model and an ordinary least squares model.
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How to do it...
The following steps describe how to apply the robust linear model:

1.	 The imports are as follows:
import statsmodels.api as sm
import matplotlib.pyplot as plt
import dautil as dl
from IPython.display import HTML

2.	 Define the following function to set the labels of the plots:
def set_labels(ax):
    ax.set_xlabel('Year')
    ax.set_ylabel('Sunactivity')

3.	 Define the following function to plot the model fits:
def plot_fit(df, ax, results):
    x = df['YEAR']
    cp = dl.plotting.CyclePlotter(ax)
    cp.plot(x[1:], df['SUNACTIVITY'][1:], label='Data')
    cp.plot(x[2:], results.predict()[1:], label='Fit')
    ax.legend(loc='best')

4.	 Load the data and add an outlier for demonstration purposes:
df = sm.datasets.sunspots.load_pandas().data
vals = df['SUNACTIVITY'].values

# Outlier added by malicious person, because noone
# laughs at his jokes.
vals[0] = 100

5.	 Fit the robust model as follows:
rlm_model = sm.RLM(vals[1:], sm.add_constant(vals[:-1]),
                   M=sm.robust.norms.TrimmedMean())

rlm_results = rlm_model.fit()
hb = dl.report.HTMLBuilder()
hb.h1('Fitting a robust linear model')
hb.h2('Robust Linear Model')
hb.add(rlm_results.summary().tables[1].as_html())

6.	 Fit an ordinary least squares model:
hb.h2('Ordinary Linear Model')
ols_model = sm.OLS(vals[1:], sm.add_constant(vals[:-1]))
ols_results = ols_model.fit()
hb.add(ols_results.summary().tables[1].as_html())
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7.	 Plot the data and the model results with the following code:
fig, [ax, ax2] = plt.subplots(2, 1)

plot_fit(df, ax, rlm_results)
ax.set_title('Robust Linear Model')
set_labels(ax)

ax2.set_title('Ordinary Least Squares')
plot_fit(df, ax2, ols_results)
set_labels(ax2)
plt.tight_layout()
HTML(hb.html)

Refer to the following screenshot for the end result (refer to the rlm_demo.ipynb file in this 
book's code bundle):
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See also
ff The relevant statsmodels documentation at http://statsmodels.

sourceforge.net/0.6.0/generated/statsmodels.robust.robust_
linear_model.RLM.html (retrieved August 2015)

Taking variance into account with weighted 
least squares

The statsmodels library allows us to define arbitrary weights per data point for regression. 
Outliers are sometimes easy to spot with simple rules of thumbs. One of these rules of thumb 
is based on the interquartile range, which is the difference between the first and third quartile 
of data. With the interquartile ranges, we can define weights for the weighted least squares 
regression.

We will use the data and model from Fitting a robust linear mode, but with arbitrary weights. 
The points we suspect are outliers will get a lower weight, which is the inverse of the 
interquartile range values just mentioned.

How to do it...
Fit the data with weighted least squares using the following method:

1.	 The imports are as follows:
import dautil as dl
import matplotlib.pyplot as plt
import statsmodels.api as sm
import numpy as np
from IPython.display import HTML

2.	 Load the data and add an outlier:
temp = dl.data.Weather.load()['TEMP'].dropna()
temp = dl.ts.groupby_yday(temp).mean()

# Outlier added by malicious person, because noone
# laughs at his jokes.
temp.values[0] = 100

3.	 Fit using an ordinary least squares model:
ntemp = len(temp)
x = np.arange(1, ntemp + 1)
factor = 2 * np.pi/365.25

http://statsmodels.sourceforge.net/0.6.0/generated/statsmodels.robust.robust_linear_model.RLM.html
http://statsmodels.sourceforge.net/0.6.0/generated/statsmodels.robust.robust_linear_model.RLM.html
http://statsmodels.sourceforge.net/0.6.0/generated/statsmodels.robust.robust_linear_model.RLM.html
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cos_x = sm.add_constant(np.cos(-factor * x - factor * 337))
ols_model = sm.OLS(temp, cos_x)
ols_results = ols_model.fit()
hb = dl.report.HTMLBuilder()
hb.h1('Taking variance into account with weighted least squares')
hb.h2('Ordinary least squares')
hb.add(ols_results.summary().tables[1].as_html())
ols_preds = ols_results.predict()

4.	 Compute weights using interquartile ranges and fit the weighted least squares model:
box = dl.stats.Box(temp)
iqrs = box.iqr_from_box()
# Adding 1 to avoid div by 0
weights = 1./(iqrs + 1)
wls_model = sm.WLS(temp, cos_x, weights=weights)
wls_results = wls_model.fit()

hb.h2('Weighted least squares')
hb.add(wls_results.summary().tables[1].as_html())

5.	 Plot the model results and weights:
sp = dl.plotting.Subplotter(2, 2, context)

sp.ax.plot(x[1:], temp[1:], 'o', label='Data')
sp.ax.plot(x[1:], ols_preds[1:], label='Fit')
sp.label(ylabel_params=dl.data.Weather.get_header('TEMP'))

sp.label(advance=True)
sp.ax.plot(x, iqrs, 'o')

sp.next_ax().plot(x[1:], temp[1:], 'o', label='Data')
sp.ax.plot(x[1:], wls_results.predict()[1:], label='Fit')
sp.label(ylabel_params=dl.data.Weather.get_header('TEMP'))

sp.label(advance=True)
sp.ax.plot(x, weights, 'o')
plt.tight_layout()
HTML(hb.html)
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Refer to the following screenshot for the end result (refer to the weighted_ls.ipynb file in 
this book's code bundle):
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See also
ff The relevant statsmodels documentation at http://statsmodels.

sourceforge.net/0.5.0/examples/generated/example_wls.html 
(retrieved August 2015).

Using arbitrary precision for optimization
The intended readers of this book should be aware of floating point number issues. I will 
remind you that we are not able to represent floating point numbers exactly. Even integer 
representation is limited. For certain applications, for instance financial calculations or 
work involving known analytic expressions, we need a higher precision than available with 
numerical software such as NumPy. The Python standard library provides the Decimal class, 
which we can use to achieve arbitrary precision. However, the specialized mpmath library is a 
better fit for more advanced use.

Temperature follows a seasonal pattern, so a model involving the cosine seems natural. We 
will apply such a model. The nice thing about using arbitrary precision is that you can easily  
do analysis, differentiate, find roots, and approximate polynomials.

Getting ready
Install the specialized mpmath library with either of the following commands:

$ conda install mpmath

$ pip install mpmath

I tested the code with mpmath 0.19 via Anaconda.

How to do it...
The following instructions describe how to use arbitrary precision for optimization:

1.	 The imports are as follows:
import numpy as np
import matplotlib.pyplot as plt
import mpmath
import dautil as dl
from IPython.display import HTML

http://statsmodels.sourceforge.net/0.5.0/examples/generated/example_wls.html
http://statsmodels.sourceforge.net/0.5.0/examples/generated/example_wls.html
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2.	 Define the following functions for the model and the first derivative:
def model(t):
    mu, C, w, phi = (9.6848106, -7.59870042, -0.01766333, 
-5.83349705)

    return mu + C * mpmath.cos(w * t + phi)

def diff_model(t):
    return mpmath.diff(model, t)

3.	 Load the data and find the root of the first derivative:
vals = dl.data.Weather.load()['TEMP'].dropna()
vals = dl.ts.groupby_yday(vals).mean()
diff_root = mpmath.findroot(diff_model, (1, 366), 
solver='anderson')

4.	 Get a polynomial approximation for the model as follows:
days = range(1, 367)
poly = mpmath.chebyfit(model, (1, 366), 3)
poly = np.array([float(c) for c in poly])

5.	 Plot the data, model results, and approximation with the following code:
sp = dl.plotting.Subplotter(2, 1, context)
cp = dl.plotting.CyclePlotter(sp.ax)
cp.plot(days, [model(i) for i in days], label='Model')
cp.plot(days, vals, label='Data')
sp.ax.annotate(s='Root of derivative', xy=(diff_root, vals.max() - 
1),
            xytext=(diff_root, vals.max() - 8),
            arrowprops=dict(arrowstyle='->'))
yvar = dl.data.Weather.get_header('TEMP')
sp.label(ylabel_params=yvar)

cp = dl.plotting.CyclePlotter(sp.next_ax())
cp.plot(days, vals, label='Data')
cp.plot(days, np.polyval(poly, days), label='Approximation')
sp.label(ylabel_params=yvar)
plt.tight_layout()
HTML(dl.report.HTMLBuilder().watermark())
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Refer to the following screenshot for the end result (refer to the mpmath_fit.ipynb file in 
this book's code bundle):

See also
ff The documentation for the chebyfit() function at https://mpmath.

readthedocs.org/en/latest/calculus/approximation.html#mpmath.
chebyfit (retrieved August 2015)

ff The documentation for the findroot() function at https://mpmath.
readthedocs.org/en/latest/calculus/optimization.html  
(retrieved August 2015)

https://mpmath.readthedocs.org/en/latest/calculus/approximation.html#mpmath.chebyfit
https://mpmath.readthedocs.org/en/latest/calculus/approximation.html#mpmath.chebyfit
https://mpmath.readthedocs.org/en/latest/calculus/approximation.html#mpmath.chebyfit
https://mpmath.readthedocs.org/en/latest/calculus/optimization.html
https://mpmath.readthedocs.org/en/latest/calculus/optimization.html
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Using arbitrary precision for linear algebra
A lot of models can be reduced to systems of linear equations, which are the domain of linear 
algebra. The mpmath library mentioned in the Using arbitrary precision for optimization recipe 
can do arbitrary precision linear algebra too.

Theoretically, we can approximate any differentiable function as a polynomial series. To find 
the coefficients of the polynomial, we can define a system of linear equations, basically taking 
powers of a data vector (vector as mathematical term) and using a vector of ones to represent 
the constant in the polynomial. We will solve such a system with the mpmath lu_solve() 
function. As example data, we will use wind speed data grouped by the day of year.

Getting ready
For the relevant instructions, refer to the Using arbitrary precision for optimization recipe.

How to do it...
Follow these steps to use arbitrary precision for linear algebra:

1.	 The imports are as follows:
import mpmath
import dautil as dl
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import HTML

2.	 Define the following function to compute the arithmetic mean with mpmath:
def mpmean(arr):
    mpfs = [mpmath.mpf(a) for a in arr]

    return sum(mpfs)/len(arr)

3.	 Load the data and solve the system with lu_solve():
vals = dl.data.Weather.load()['WIND_SPEED'].dropna()
vals = dl.ts.groupby_yday(vals).apply(mpmean)

days = np.arange(1, 367, dtype=int)
A = [[], [], []]
A[0] = np.ones_like(days, dtype=int).tolist()
A[1] = days.tolist()
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A[2] = (days ** 2).tolist()
A = mpmath.matrix(A).transpose()

params = mpmath.lu_solve(A, vals)

result = dl.report.HTMLBuilder()
result.h1('Arbitrary Precision Linear Algebra')
result.h2('Polynomial fit')
dfb = dl.report.DFBuilder(['Coefficient 0', 'Coefficient 1', 
'Coefficient 2'])
dfb.row(params)
result.add_df(dfb.build())

4.	 Define the following function to evaluate the polynomial we got:
def poly(x):
    return mpmath.polyval(params[::-1], x)

5.	 Use the fourier() function to get a trigonometric approximation:
cs = mpmath.fourier(poly, days.tolist(), 1)
result.h2('Cosine and sine terms')
dfb = dl.report.DFBuilder(['Coefficient 1', 'Coefficient 2'])
dfb.row(cs[0])
dfb.row(cs[1])
result.add_df(dfb.build(index=['Cosine', 'Sine']), index=True)

6.	 Plot the data, model results, and approximation as follows:
sp = dl.plotting.Subplotter(2, 1, context)

cp = dl.plotting.CyclePlotter(sp.ax)
cp.plot(days, vals, label='Data')
cp.plot(days, poly(days), label='Fit')
yvar = dl.data.Weather.get_header('WIND_SPEED')
sp.label(ylabel_params=yvar)

cp = dl.plotting.CyclePlotter(sp.next_ax())
cp.plot(days, vals, label='Data')
cp.plot(days, [mpmath.fourierval(cs, days, d) for d in days], 
label='Approximation')
sp.label(ylabel_params=yvar)
plt.tight_layout()
HTML(result.html)
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Refer to the following screenshot for the end result (refer to the mpmath_linalg.ipynb file 
in this book's code bundle):

See also
ff The fourier() function documented at https://mpmath.readthedocs.org/

en/latest/calculus/approximation.html?highlight=fourier#mpmath.
fourier (retrieved August 2015)

ff The lu_solve() function documented at https://mpmath.readthedocs.org/
en/latest/matrices.html?highlight=lu_solve (retrieved August 2015)

https://mpmath.readthedocs.org/en/latest/calculus/approximation.html?highlight=fourier#mpmath.fourier
https://mpmath.readthedocs.org/en/latest/calculus/approximation.html?highlight=fourier#mpmath.fourier
https://mpmath.readthedocs.org/en/latest/calculus/approximation.html?highlight=fourier#mpmath.fourier
https://mpmath.readthedocs.org/en/latest/matrices.html?highlight=lu_solve
https://mpmath.readthedocs.org/en/latest/matrices.html?highlight=lu_solve
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5
Web Mining, Databases, 

and Big Data

On the menu for this chapter are the following recipes:

ff Simulating web browsing

ff Scraping the Web

ff Dealing with non-ASCII text and HTML entities

ff Implementing association tables

ff Setting up database migration scripts

ff Adding a table column to an existing table

ff Adding indices after table creation

ff Setting up a test web server

ff Implementing a star schema with fact and dimension tables

ff Using HDFS

ff Setting up Spark

ff Clustering data with Spark
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Introduction
This chapter is light on math, but it is more focused on technical topics. Technology has a 
lot to offer for data analysts. Databases have been around for a while, but the relational 
databases that most people are familiar with can be traced back to the 1970s. Edgar Codd 
came up with a number of ideas that later led to the creation of the relational model and  
SQL. Relational databases have been a dominant technology since then. In the 1980s,  
object-oriented programming languages caused a paradigm shift and an unfortunate 
mismatch with relational databases.

Object-oriented programming languages support concepts such as inheritance, which 
relational databases and SQL do not support (of course with some exceptions). The Python 
ecosystem has several object-relational mapping (ORM) frameworks that try to solve 
this mismatch issue. It is not possible and is unnecessary to cover them all, so I chose 
SQLAlchemy for the recipes here. We will also have a look at database schema migration  
as a common hot topic, especially for production systems.

Big data is one of the buzzwords that you may have heard of. Hadoop and Spark may probably 
also sound familiar. We will look at these frameworks in this chapter. If you use my Docker 
image, you will unfortunately not find Selenium, Hadoop, and Spark in there because I decided 
not to include them to save space.

Another important technological development is the World Wide Web, also known as the 
Internet. The Internet is the ultimate data source; however, getting this data in an easy-to-
analyze form is sometimes quite a challenge. As a last resource, we may have to crawl and 
scrape web pages. Success is not guaranteed because the website owner can change the 
content without warning us. It is up to you to keep the code of the web scraping recipes  
up to date.

Simulating web browsing
Corporate websites are usually made by teams or departments using specialized tools and 
templates. A lot of the content is generated on the fly and consists of a large part of JavaScript 
and CSS. This means that even if we download the content, we still have to, at least, evaluate 
the JavaScript code. One way that we can do this from a Python program is using the 
Selenium API. Selenium's main purpose is actually testing websites, but nothing stops us from 
using it to scrape websites.

Instead of scraping a website, we will scrape an IPython Notebook—the test_widget.
ipynb file in this book's code bundle. To simulate browsing this web page, we provided  
a unit test class in test_simulating_browsing.py. In case you wondered, this is not  
the recommended way to test IPython Notebooks.
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For historic reasons, I prefer using XPath to find HTML elements. XPath is a query language, 
which also works with HTML. This is not the only method, you can also use CSS selectors, tag 
names, or IDs. To find the right XPath expression, you can either install a relevant plugin for 
your favorite browser, or for instance in Google Chrome, you can inspect an element's XPath.

Getting ready
Install Selenium with the following command:

$ pip install selenium

I tested the code with Selenium 2.47.1.

How to do it…
The following steps show you how to simulate web browsing using an IPython widget that I 
made. The code for this recipe is in the test_simulating_browsing.py file in this book's 
code bundle:

1.	 The first step is to run the following:
$ ipython notebook

2.	 The imports are as follows:
from selenium import webdriver
import time
import unittest
import dautil as dl

NAP_SECS = 10

3.	 Define the following function, which creates a Firefox browser instance:
class SeleniumTest(unittest.TestCase):
    def setUp(self):
        self.logger = dl.log_api.conf_logger(__name__)
        self.browser = webdriver.Firefox()

4.	 Define the following function to clean up when the test is done:
    def tearDown(self):
        self.browser.quit()
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5.	 The following function clicks on the widget tabs (we have to wait for the user interface 
to respond):
def wait_and_click(self, toggle, text):
        xpath = "//a[@data-toggle='{0}' and contains(text(), 
'{1}')]"
        xpath = xpath.format(toggle, text)
        elem = dl.web.wait_browser(self.browser, xpath)
        elem.click()

6.	 Define the following function, which performs the test that consists of evaluating  
the notebook cells and clicking on a couple of tabs in the IPython widget (we use  
port 8888):

    def test_widget(self):
        self.browser.implicitly_wait(NAP_SECS)
        self.browser.get('http://localhost:8888/notebooks/test_
widget.ipynb')

        try:
            # Cell menu
            xpath = '//*[@id="menus"]/div/div/ul/li[5]/a'
            link = dl.web.wait_browser(self.browser, xpath)
            link.click()
            time.sleep(1)

            # Run all
            xpath = '//*[@id="run_all_cells"]/a'
            link = dl.web.wait_browser(self.browser, xpath)
            link.click()
            time.sleep(1)

            self.wait_and_click('tab', 'Figure')
            self.wait_and_click('collapse', 'figure.figsize')
        except Exception:
            self.logger.warning('Error while waiting to click', 
exc_info=True)
            self.browser.quit()

        time.sleep(NAP_SECS)
        self.browser.save_screenshot('widgets_screenshot.png')

if __name__ == "__main__":
    unittest.main()
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The following screenshot is created by the code:

See also
ff The Selenium documentation is at https://selenium-python.readthedocs.

org/en/latest/installation.html (retrieved September 2015)

ff The Wikipedia page about XPath is at https://en.wikipedia.org/wiki/XPath 
(retrieved September 2015)

Scraping the Web
We know that search engines send out autonomous programs called bots to find information 
on the Internet. Usually, this leads to the creation of giant indices similar to a phonebook or 
a dictionary. The current situation (September 2015) for Python 3 users is not ideal when 
it comes to scraping the Web. Most frameworks only support Python 2. However, Guido van 
Rossum, Benevolent Dictator for Life (BDFL) has just contributed a crawler on GitHub that 
uses the AsyncIO API. All hail the BDFL!

https://selenium-python.readthedocs.org/en/latest/installation.html
https://selenium-python.readthedocs.org/en/latest/installation.html
https://en.wikipedia.org/wiki/XPath
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I forked the repository and made small changes in order to save crawled URLs. I also made 
the crawler exit early. These changes are not very elegant, but this was all I could do in a 
limited time frame. Anyway, I can't hope to do better than the BDFL himself.

Once we have a list of web links, we will load these webpages from Selenium (refer to the 
Simulating web browsing recipe). I chose PhantomJS, a headless browser, which should have 
a lighter footprint than Firefox. Although this is not strictly necessary, I think that it makes 
sense to sometimes download the web pages you are scraping, because you then can test 
scraping locally. You can also change the links in the downloaded HTML to point to local files. 
This is related to the Setting up a test web server recipe. A common use case of scraping is  
to create a text corpus for linguistic analysis. This is our goal in this recipe.

Getting ready
Install Selenium as described in the Simulating web browsing recipe. I use PhantomJS in 
this recipe, but this is not a hard requirement. You can use any other browser supported 
by Selenium. My modifications are under the 0.0.1 tag at https://github.com/
ivanidris/500lines/releases (retrieved September 2015). Download one of the 
source archives and unpack it. Navigate to the crawler directory and its code subdirectory.

Start (optional step) the crawler with the following command (I used CNN as an example):

$ python crawl.py edition.cnn.com

How to do it…
You can use the CSV file with links in this book's code bundle or make your own as I explained 
in the previous section. The following procedure describes how to create a text corpus of news 
articles (refer to the download_html.py file in this book's code bundle):

1.	 The imports are as follows:
import dautil as dl
import csv
import os
from selenium import webdriver
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.by import By
import urllib.parse as urlparse
import urllib.request as urlrequest

2.	 Define the following global constants:
LOGGER = dl.log_api.conf_logger('download_html')
DRIVER = webdriver.PhantomJS()
NAP_SECONDS = 10

https://github.com/ivanidris/500lines/releases
https://github.com/ivanidris/500lines/releases
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3.	 Define the following function to extract text from a HTML page and save it:
def write_text(fname):
    elems = []

    try:
        DRIVER.get(dl.web.path2url(fname))

        elems = WebDriverWait(DRIVER, NAP_SECONDS).until(
            EC.presence_of_all_elements_located((By.XPATH, '//p'))
        )

        LOGGER.info('Elems', elems)

        with open(fname.replace('.html', '_phantomjs.html'), 'w') 
as pjs_file:
            LOGGER.warning('Writing to %s', pjs_file.name)
            pjs_file.write(DRIVER.page_source)

    except Exception:
        LOGGER.error("Error processing HTML", exc_info=True)

    new_name = fname.replace('html', 'txt')

    if not os.path.exists(new_name):
        with open(new_name, 'w') as txt_file:
            LOGGER.warning('Writing to %s', txt_file.name)

            lines = [e.text for e in elems]
            LOGGER.info('lines', lines)
            txt_file.write(' \n'.join(lines))

4.	 Define the following main() function, which reads the CSV file with links and calls 
the functions in the previous steps:

def main():
    filedir = os.path.join(dl.data.get_data_dir(), 'edition.cnn.
com')

    with open('saved_urls.csv') as csvfile:
        reader = csv.reader(csvfile)

        for line in reader:
            timestamp, count, basename, url = line
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            fname = '_'.join([count, basename])
            fname = os.path.join(filedir, fname)

            if not os.path.exists(fname):
                dl.data.download(url, fname)

            write_text(fname)

if __name__ == '__main__':
    DRIVER.implicitly_wait(NAP_SECONDS)
    main()
    DRIVER.quit()

Dealing with non-ASCII text and HTML 
entities

HTML is not as structured as data from a database query or a pandas DataFrame. You may 
be tempted to manipulate HTML with regular expressions or string functions. However, this 
approach works only in a limited number of cases. You are better off using specialized Python 
libraries to process HTML. In this recipe, we will use the clean_html() function of the lxml 
library. This function strips all JavaScript and CSS from a HTML page.

American Standard Code for Information Interchange (ASCII) was the dominant encoding 
standard on the Internet until the end of 2007 with UTF-8 (8-bit Unicode) taking over first 
place. ASCII is limited to the English alphabet and has no support for alphabets of different 
languages. Unicode has a much broader support for alphabets. However, we sometimes need 
to limit ourselves to ASCII, so this recipe gives you an example of how to ignore non-ASCII 
characters.

Getting ready
Install lxml with pip or conda, as follows:

$ pip install lxml

$ conda install lxml

I tested the code with lxml 3.4.2 from Anaconda.

How to do it…
The code is in the processing_html.py file in this book's code bundle and is broken up in 
the following steps:
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1.	 The imports are as follows:
from lxml.html.clean import clean_html
from difflib import Differ
import unicodedata
import dautil as dl

PRINT = dl.log_api.Printer()

2.	 Define the following function to diff two files:
def diff_files(text, cleaned):
    d = Differ()
    diff = list(d.compare(text.splitlines(keepends=True),
                          cleaned.splitlines(keepends=True)))
    PRINT.print(diff)

3.	 The following code block opens a HTML file, cleans it, and compares the cleaned file 
with the original:
with open('460_cc_phantomjs.html') as html_file:
    text = html_file.read()
    cleaned = clean_html(text)
    diff_files(text, cleaned)
    PRINT.print(dl.web.find_hrefs(cleaned))

4.	 The following snippet demonstrates handling of non-ASCII text:

bulgarian = 'Питон is Bulgarian for Python'
PRINT.print('Bulgarian', bulgarian)
PRINT.print('Bulgarian ignored', unicodedata.normalize('NFKD', 
bulgarian).encode('ascii', 'ignore'))

Refer to the following screenshot for the end result (I omitted some of the output for brevity):
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See also
ff The lxml documentation is at http://lxml.de/index.html (retrieved  

September 2015)

Implementing association tables
The association table acts as a bridge between database tables, which have a many-to-many 
relationship. The table contains foreign keys that are linked to the primary keys of the tables  
it connects.

In this recipe, we will associate web pages with links within the page. A page has many links, 
and links can be in many pages. We will concern ourselves only with links to other websites, 
but this is not a requirement. If you are trying to reproduce a website on your local machine  
for testing or analysis, you will want to store image and JavaScript links as well. Have a look  
at the following relational schema diagram:

Getting ready
I installed SQLAlchemy 0.9.9 with Anaconda, as follows:

$ conda install sqlalchemy

If you prefer, you can also install SQLAlchemy with the following command:

$ pip install sqlalchemy

How to do it…
The following code from the impl_association.py file in this book's code bundle 
implements the association table pattern:

1.	 The imports are as follows:
from sqlalchemy import create_engine
from sqlalchemy import Column

http://lxml.de/index.html
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from sqlalchemy import ForeignKey
from sqlalchemy import Integer
from sqlalchemy import String
from sqlalchemy import Table
from sqlalchemy.orm import backref
from sqlalchemy.orm import relationship
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
from sqlalchemy.exc import IntegrityError
import dautil as dl
import os

Base = declarative_base()

2.	 Define the following class to represent a web page:
class Page(Base):
    __tablename__ = 'pages'
    id = Column(Integer, primary_key=True)
    filename = Column(String, nullable=False, unique=True)
    links = relationship('Link', secondary='page_links')

    def __repr__(self):
        return "Id=%d filename=%s" %(self.id, self.filename)

3.	 Define the following class to represent a web link:
class Link(Base):
    __tablename__ = 'links'
    id = Column(Integer, primary_key=True)
    url = Column(String, nullable=False, unique=True)

    def __repr__(self):
        return "Id=%d url=%s" %(self.id, self.url)

4.	 Define the following class to represent the association between pages and links:
class PageLink(Base):
    __tablename__ = 'page_links'
    page_id = Column(Integer, ForeignKey('pages.id'), primary_
key=True)
    link_id = Column(Integer, ForeignKey('links.id'), primary_
key=True)
    page = relationship('Page', backref=backref('link_assoc'))
    link = relationship('Link', backref=backref('page_assoc'))

    def __repr__(self):
        return "page_id=%s link_id=%s" %(self.page_id, self.link_
id)
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5.	 Define the following function to go through HTML files and update the related tables:
def process_file(fname, session):
    with open(fname) as html_file:
        text = html_file.read()

        if dl.db.count_where(session, Page.filename, fname):
            # Cowardly refusing to continue
            return

        page = Page(filename=fname)
        hrefs = dl.web.find_hrefs(text)

        for href in set(hrefs):
            # Only saving http links
            if href.startswith('http'):
                if dl.db.count_where(session, Link.url, href):
                    continue

                link = Link(url=href)
                session.add(PageLink(page=page, link=link))

        session.commit()

6.	 Define the following function to populate the database:
def populate():
    dir = dl.data.get_data_dir()
    path = os.path.join(dir, 'crawled_pages.db')
    engine = create_engine('sqlite:///' + path)
    DBSession = sessionmaker(bind=engine)
    Base.metadata.create_all(engine)
    session = DBSession()

    files  = ['460_cc_phantomjs.html', '468_live_phantomjs.html']

    for file in files:
        process_file(file, session)

    return session

7.	 The following code snippet uses the functions and classes that we defined:

if __name__ == "__main__":
    session = populate()
    printer = dl.log_api.Printer(nelems=3)
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    pages = session.query(Page).all()
    printer.print('Pages', pages)

    links = session.query(Link).all()
    printer.print('Links', links)

    page_links = session.query(PageLink).all()
    printer.print('PageLinks', page_links)

Refer to the following screenshot for the end result:

Setting up database migration scripts
One of the first things that you learn in programming classes is that nobody can get a complex 
program right the very first time. Software evolves over time, and we hope for the best. 
Automation in automated testing helps ensure that our programs improve over time. However, 
when it comes to evolving database schemas, automation doesn't seem to be so obvious. 
Especially in large enterprises, database schemas are the domain of database administrators 
and specialists. Of course, there are security and operational issues related to changing 
schemas, even more so in production databases. In any case, you can always implement 
database migration in your local test environment and document proposed changes for the 
production team.

We will use Alembic to demonstrate how you can go about setting up migration scripts. In my 
opinion, Alembic is the right tool for the job, although it is in beta as of September 2015.
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Getting ready
Install Alembic with the following command:

$ pip install alembic

Alembic depends on SQLAlchemy, and it will automatically install SQLAlchemy if needed. You 
should now have the alembic command in your path. I used Alembic 0.8.2 for this chapter.

How to do it…
The following steps describe how to set up Alembic migration steps. When we run the Alembic 
initialization script in a directory, it creates an alembic directory and a configuration file 
named alembic.ini:

1.	 Navigate to the appropriate directory and initialize the migration project, as follows:
$ alembic init alembic

2.	 Edit the alembic.ini file as required. For instance, change the sqlalchemy.url 
property to point to the correct database.

See also
ff The relevant Alembic documentation is at https://alembic.readthedocs.org/

en/latest/tutorial.html (retrieved September 2015)

Adding a table column to an existing table
If we use an object-relational mapper (ORM), such as SQLAlchemy, we map classes to tables 
and class attributes to table columns. Often, due to new business requirements, we need to 
add a table column and corresponding class attribute. We will probably need to populate the 
column immediately after adding it.

If we deal with a production database, then probably you do not have direct access. Luckily, 
we can generate SQL with Alembic, which a database administrator can review.

Getting ready
Refer to the Setting up database migration scripts recipe.

https://alembic.readthedocs.org/en/latest/tutorial.html
https://alembic.readthedocs.org/en/latest/tutorial.html
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How to do it…
Alembic has its own versioning system, which requires extra tables. It also creates a 
versions directory under the alembic directory with generated Python code files.  
We need to specify the types of change necessary for migration in these files:

1.	 Create a new revision, as follows:
$ alembic revision -m "Add a column"

2.	 Open the generated Python file (for instance, 27218d73000_add_a_column.py). 
Replace the two functions in there with the following code, which adds the link_
type string column:
def upgrade():
    # MODIFIED Ivan Idris
    op.add_column('links', sa.Column('link_type', sa.String(20)))

def downgrade():
    # MODIFIED Ivan Idris
    op.drop_column('links', 'link_type')

3.	 Generate SQL, as follows:
$ alembic upgrade head --sql

Refer to the following screenshot for the end result:
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Adding indices after table creation
Indices are a general concept in computing. This book also has an index for faster lookup, 
which matches concepts to page numbers. An index takes up space; in the case of this book, 
a couple of pages. Database indices have the added disadvantage that they make inserts 
and updates slower because of the extra overhead of updating the index. Usually, primary and 
foreign keys automatically get an index, but this depends on the database implementation.

Adding indices should not be taken lightly, and this is best done after consulting database 
administrators. Alembic has features for index addition similar to the features that we saw  
in the Adding a table column to an existing table recipe.

Getting ready
Refer to the Setting up database migration scripts recipe.

How to do it…
This recipe has some overlap with the Adding a table column to an existing table recipe, so I 
will not repeat all the details:

1.	 Create a new revision, as follows:
$ alembic revision -m "Add indices"

2.	 Open the generated Python file (for instance, 21579ecccd8_add_indices.py) and 
modify the code to have the following functions, which take care of adding indices:
def upgrade():
    # MODIFIED Ivan Idris
    op.create_index('idx_links_url', 'links', ['url'])
    op.create_index('idx_pages_filename', 'pages', ['filename'])

def downgrade():
    # MODIFIED Ivan Idris
    op.drop_index('idx_links_url')
    op.drop_index('idx_pages_filename')

3.	 Generate SQL, as follows:
$ alembic upgrade head --sql
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Refer to the following screenshot for the end result:

How it works…
The create_index() function adds indices given an index name, a table, and a list of  
table columns. The drop_index() function does the opposite, removing indices given  
an index name.

See also
ff The Wikipedia page about database indices is at https://en.wikipedia.org/

wiki/Database_index (retrieved September 2015)

Setting up a test web server
In Chapter 1, Laying the Foundation for Reproducible Data Analysis, we discussed why unit 
testing is a good idea. Purists will tell you that you only need unit tests. However, the general 
consensus is that higher-level testing can also be useful.

Obviously, this book is about data analysis and not about web development. Still, sharing 
your results or data via a website or web service is a common requirement. When you mine 
the Web or do something else related to the Web, it often becomes necessary to reproduce 
certain use cases, such as login forms. As you expect of a mature language, Python has 
many great web frameworks. I chose Flask, a simple Pythonic web framework for this recipe 
because it seemed easy to set up, but you should use your own judgment because I have no 
idea what your requirements are.

https://en.wikipedia.org/wiki/Database_index
https://en.wikipedia.org/wiki/Database_index
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Getting ready
I tested the code with Flask 0.10.1 from Anaconda. Install Flask with conda or pip,  
as follows:

$ conda install flask

$ pip install flask

How to do it…
In this recipe, we will set up a secure page with a login form, which you can use for testing. 
The code consists of a app.py Python file and a HTML file in the templates directory  
(I will not discuss the HTML in detail):

1.	 The imports are as follows:
from flask import Flask
from flask import render_template
from flask import request
from flask import redirect
from flask import url_for

app = Flask(__name__)

2.	 Define the following function to handle requests for the home page:
@app.route('/')
def home():
    return "Test Site"

3.	 Define the following function to process login attempts:
@app.route('/secure', methods=['GET', 'POST'])
def login():
    error = None
    if request.method == 'POST':
        if request.form['username'] != 'admin' or\
                request.form['password'] != 'admin':
            error = 'Invalid password or user name.'
        else:
            return redirect(url_for('home'))
    return render_template('admin.html', error=error)



Chapter 5

153

4.	 The following block runs the server (don't use debug=True for public-facing websites):
if __name__ == '__main__':
    app.run(debug=True)

5.	 Run $ python app.py and open a web browser at http://127.0.0.1:5000/ 
and http://127.0.0.1:5000/secure.

Refer to the following screenshot for the end result:

Implementing a star schema with fact and 
dimension tables

The star schema is a database pattern that facilitates reporting. Star schemas are 
appropriate for the processing of events, such as website visits, ad clicks, or financial 
transactions. Event information (metrics, such as temperature or purchase amount) is stored 
in fact tables linked to much smaller dimension tables. Star schemas are denormalized, which 
places the responsibility of integrity checks to the application code. For this reason, we should 
only write to the database in a controlled manner. If you use SQLAlchemy for bulk inserts, you 
should choose the Core API over the ORM API or use straight SQL. You can read more about 
the reasons at http://docs.sqlalchemy.org/en/rel_1_0/faq/performance.html 
(retrieved September 2015).

Time is a common dimension in reporting. For instance, we can store dates of daily weather 
measurements in a dimension table. For each date in our data, we can save the date, year, 
month, and day of year. We can prepopulate this table before processing events and then add 
new dates as needed. We don't even have to add new records to the time dimension table 
if we assume that we only need to maintain the database for a century. In such a case, we 
will just prepopulate the time dimension table with all the possible dates in the range that 
we want to support. If we are dealing with binary or categorical variables, pre-populating the 
dimension tables should be possible too.

http://docs.sqlalchemy.org/en/rel_1_0/faq/performance.html


Web Mining, Databases, and Big Data

154

In this recipe, we will implement a star schema for direct marketing data described in 
http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-
and-data.html (retrieved September 2015). The data is in a CSV file from a direct 
marketing campaign. For the sake of simplicity, we will ignore some of the columns. As a 
metric, we will take the spend column with purchase amounts. For the dimensions, I chose 
the channel (Phone, Web, or Multichannel), the zip code (Rural, Suburban, or Urban) and 
segment (Mens, Womens, or no e-mail). Refer to the following entity-relationship diagram:

How to do it…
The following code downloads the data, loads it in a database, and then queries the database 
(refer to the star_schema.py file in this book's code bundle):

1.	 The imports are as follows:
from sqlalchemy import Column
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import ForeignKey
from sqlalchemy import Integer
from sqlalchemy import String
from sqlalchemy.orm import sessionmaker
from sqlalchemy import func
import dautil as dl
from tabulate import tabulate
import sqlite3
import os
from joblib import Memory

Base = declarative_base()
memory = Memory(cachedir='.')

 http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html
 http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html
 http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html
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2.	 Define the following class to represent the ZIP code dimension:
class DimZipCode(Base):
    __tablename__ = 'dim_zip_code'
    id = Column(Integer, primary_key=True)
    # Urban, Suburban, or Rural.
    zip_code = Column(String(8), nullable=False, unique=True)

3.	 Define the following class to represent the segment dimension:
class DimSegment(Base):
    __tablename__ = 'dim_segment'
    id = Column(Integer, primary_key=True)
    # Mens E-Mail, Womens E-Mail or No E-Mail
    segment = Column(String(14), nullable=False, unique=True)

4.	 Define the following class to represent the channel dimension:
class DimChannel(Base):
    __tablename__ = 'dim_channel'
    id = Column(Integer, primary_key=True)
    channel = Column(String)

5.	 Define the following class to represent the fact table:
class FactSales(Base):
    __tablename__ = 'fact_sales'
    id = Column(Integer, primary_key=True)
    zip_code_id = Column(Integer, ForeignKey('dim_zip_code.id'),
                         primary_key=True)
    segment_id = Column(Integer, ForeignKey('dim_segment.id'),
                        primary_key=True)
    channel_id = Column(Integer, ForeignKey('dim_channel.id'),
                        primary_key=True)

    # Storing amount as cents
    spend = Column(Integer)

    def __repr__(self):
        return "zip_code_id={0} channel_id={1} segment_id={2}".
format(
            self.zip_code_id, self.channel_id, self.segment_id)

6.	 Define the following function to create a SQLAlchemy session:
def create_session(dbname):
    engine = create_engine('sqlite:///{}'.format(dbname))
    DBSession = sessionmaker(bind=engine)
    Base.metadata.create_all(engine)

    return DBSession()
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7.	 Define the following function to populate the segment dimension table:
def populate_dim_segment(session):
    options = ['Mens E-Mail', 'Womens E-Mail', 'No E-Mail']

    for option in options:
        if not dl.db.count_where(session, DimSegment.segment, 
option):
            session.add(DimSegment(segment=option))

    session.commit()

8.	 Define the following function to populate the ZIP code dimension table:
def populate_dim_zip_code(session):
    # Note the interesting spelling
    options = ['Urban', 'Surburban', 'Rural']

    for option in options:
        if not dl.db.count_where(session, DimZipCode.zip_code, 
option):
            session.add(DimZipCode(zip_code=option))

    session.commit()

9.	 Define the following function to populate the channel dimension table:
def populate_dim_channels(session):
    options = ['Phone', 'Web', 'Multichannel']

    for option in options:
        if not dl.db.count_where(session, DimChannel.channel, 
option):
            session.add(DimChannel(channel=option))

    session.commit()

10.	 Define the following function to populate the fact table (it uses straight SQL for 
performance reasons):
def load(csv_rows, session, dbname):
    channels = dl.db.map_to_id(session, DimChannel.channel)
    segments = dl.db.map_to_id(session, DimSegment.segment)
    zip_codes = dl.db.map_to_id(session, DimZipCode.zip_code)
    conn = sqlite3.connect(dbname)
    c = conn.cursor()
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    logger = dl.log_api.conf_logger(__name__)

    for i, row in enumerate(csv_rows):
        channel_id = channels[row['channel']]
        segment_id = segments[row['segment']]
        zip_code_id = zip_codes[row['zip_code']]
        spend = dl.data.centify(row['spend'])

        insert = "INSERT INTO fact_sales (id, segment_id,\
            zip_code_id, channel_id, spend) VALUES({id}, \
            {sid}, {zid}, {cid}, {spend})"
        c.execute(insert.format(id=i, sid=segment_id,
                                zid=zip_code_id, cid=channel_id,     
spend=spend))

        if i % 1000 == 0:
            logger.info("Progress %s/64000", i)
            conn.commit()

    conn.commit()
    c.close()
    conn.close()

11.	 Define the following function to download and parse the data:
@memory.cache
def get_and_parse():
    out = dl.data.get_direct_marketing_csv()
    return dl.data.read_csv(out)

12.	 The following block uses the functions and classes we defined:

if __name__ == "__main__":
    dbname = os.path.join(dl.data.get_data_dir(), 'marketing.db')
    session = create_session(dbname)
    populate_dim_segment(session)
    populate_dim_zip_code(session)
    populate_dim_channels(session)

    if session.query(FactSales).count() < 64000:
        load(get_and_parse(), session, dbname)

    fsum = func.sum(FactSales.spend)
    query = session.query(DimSegment.segment, DimChannel.channel,
                          DimZipCode.zip_code, fsum)
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    dim_cols = (DimSegment.segment, DimChannel.channel, 
DimZipCode.zip_code)
    dim_entities = [dl.db.entity_from_column(col) for col in dim_
cols]
    spend_totals = query.join(FactSales,
                              *dim_entities)\
                        .group_by(*dim_cols).order_by(fsum.
desc()).all()
    print(tabulate(spend_totals, tablefmt='psql',
                   headers=['Segment', 'Channel', 'Zip Code', 
'Spend']))

Refer to the following screenshot for the end result (spending amounts in cents):

See also
ff The Star schema Wikipedia page at https://en.wikipedia.org/wiki/Star_

schema (retrieved September 2015)

https://en.wikipedia.org/wiki/Star_schema
https://en.wikipedia.org/wiki/Star_schema
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Using HDFS
Hadoop Distributed File System (HDFS) is the storage component of the Hadoop framework 
for Big Data. HDFS is a distributed filesystem, which spreads data on multiple systems, and 
is inspired by the Google File System used by Google for its search engine. HDFS requires a 
Java Runtime Environment (JRE), and it uses a NameNode server to keep track of the files. 
The system also replicates the data so that losing a few nodes doesn't lead to data loss. The 
typical use case for HDFS is processing large read-only files. Apache Spark, also covered in 
this chapter, can use HDFS too.

Getting ready
Install Hadoop and a JRE. As these are not Python frameworks, you will have to check what 
the appropriate procedure is for your operating system. I used Hadoop 2.7.1 with Java 
1.7.0_60 for this recipe. This can be a complicated process, but there are many resources 
online that can help you troubleshoot for your specific system.

How to do it…
We can configure HDFS with several XML files found in your Hadoop install. Some of the steps 
in this section serve only as example and you should implement them as appropriate for your 
operating system, environment, and personal preferences:

1.	 Edit the core-site.xml file so that it has the following content (comments omitted):
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
    <property>
        <name>fs.default.name</name>
        <value>hdfs://localhost:8020</value>
    </property>
</configuration>

2.	 Edit the hdfs-site.xml file so that it has the following content (comments omitted), 
setting the replication of each file to just 1, to run HDFS locally:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
    <property>
        <name>dfs.replication</name>
        <value>1</value>
    </property>
</configuration>
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3.	 If necessary, enable Remote login on your system to SSH into localhost and generate 
keys (Windows users can use putty):
$ ssh-keygen -t dsa -f ~/.ssh/id_dsa

$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys

4.	 Format the filesystem from the root of the Hadoop directory:
$ bin/hdfs namenode –format

5.	 Start the NameNode server, as follows (the opposite command is $ sbin/stop-
dfs.sh):
$ sbin/start-dfs.sh

6.	 Create a directory in HDFS with the following command:
$ hadoop fs -mkdir direct_marketing

7.	 Optionally, if you want to use the direct_marketing.csv file in the Spark recipe, 
you need to copy it into HDFS, as follows:
$ hadoop fs -copyFromLocal <path to file>/direct_marketing.csv 
direct_marketing

See also
ff The HDFS user guide at https://hadoop.apache.org/docs/r2.6.0/hadoop-

project-dist/hadoop-hdfs/HdfsUserGuide.html (retrieved September 
2015)

Setting up Spark
Apache Spark is a project in the Hadoop ecosystem (refer to the Using HDFS recipe), which 
purportedly performs better than Hadoop's MapReduce. Spark loads data into memory as 
much as possible, and it has good support for machine learning. In the Clustering data with 
Spark recipe, we will apply a machine learning algorithm via Spark.

Spark can work standalone, but it is designed to work with Hadoop using HDFS. Resilient 
Distributed Datasets (RDDs) are the central structure in Spark, and they represent 
distributed data. Spark has good support for Scala, which is a JVM language, and a somewhat 
lagging support for Python. For instance, the support to stream in the pyspark API lags a bit. 
Spark also has the concept of DataFrames, but it is not implemented through pandas, but 
through a Spark implementation.

https://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
https://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
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Getting ready
Download Spark from the downloads page at https://spark.apache.org/downloads.
html (retrieved September 2015). I downloaded the spark-1.5.0-bin-hadoop2.6.tgz 
archive for Spark 1.5.0.

Unpack the archive in an appropriate directory.

How to do it…
The following steps illustrate a basic setup for Spark with a few optional steps:

1.	 If you want to use a different Python version than the system Python, set the 
PYSPARK_PYTHON environment variable via the GUI of your operating system  
or the CLI, as follows:
$ export PYSPARK_PYTHON=/path/to/anaconda/bin/python

2.	 Set the SPARK_HOME environment variable, as follows:
$ export SPARK_HOME=<path/to/spark/>spark-1.5.0-bin-hadoop2.6

3.	 Add the python directory to your PYTHONPATH environment variable, as follows:
$ export PYTHONPATH=$SPARK_HOME/python:$PYTHONPATH

4.	 Add the ZIP of py4j to your PYTHONPATH environment variable, as follows:
$ export PYTHONPATH=$SPARK_HOME/python/lib/py4j-0.8.2.1-src.
zip:$PYTHONPATH

5.	 If the logging of Spark is too verbose, copy the log4j.properties.template file 
in the $SPARK_HOME/conf directory to log4j.properties and change the INFO 
levels to WARN.

See also
The official Spark website is at http://spark.apache.org/ (retrieved September 2015)

Clustering data with Spark
In the previous recipe, Setting up Spark, we covered a basic setup of Spark. If you followed 
the Using HDFS recipe, you can optionally serve the data from Hadoop. In this case, you need 
to specify the URL of the file in this manner, hdfs://hdfs-host:port/path/direct_
marketing.csv.

https://spark.apache.org/downloads.html
https://spark.apache.org/downloads.html
http://spark.apache.org/
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We will use the same data as we did in the Implementing a star schema with fact and 
dimension tables recipe. However, this time we will use the spend, history, and recency 
columns. The first column corresponds to recent purchase amounts after a direct marketing 
campaign, the second to historical purchase amounts, and the third column to the recency of 
purchase in months. The data is described in http://blog.minethatdata.com/2008/03/
minethatdata-e-mail-analytics-and-data.html (retrieved September 2015). We will 
apply the popular K-means machine-learning algorithm to cluster the data. Chapter 9, Ensemble 
Learning and Dimensionality Reduction, pays more attention to machine learning algorithms. 
The K-means algorithm attempts to find the best clusters for a dataset given a number of 
clusters. We are supposed to either know this number or find it through trial and error. In this 
recipe, I evaluate the clusters through the Within Set Sum Squared Error (WSSSE), also known 
as Within Cluster Sum of Squares (WCSS). This metric calculates the sum of the squared 
error of the distance between each point and its assigned cluster. You can read more about 
evaluation metrics in Chapter 10, Evaluating Classifiers, Regressors, and Clusters.

Getting ready
Follow the instructions in the Setting up Spark recipe.

How to do it…
The code for this recipe is in the clustering_spark.py file in this book's code bundle:

1.	 The imports are as follows:
from pyspark.mllib.clustering import KMeans
from pyspark import SparkContext
import dautil as dl
import csv
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib.colors import Normalize

2.	 Define the following function to compute the error:
def error(point, clusters):
    center = clusters.centers[clusters.predict(point)]

    return dl.stats.wssse(point, center)

3.	 Read and parse the data, as follows:
sc = SparkContext()
csv_file = dl.data.get_direct_marketing_csv()
lines = sc.textFile(csv_file)
header = lines.first().split(',')

http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html
http://blog.minethatdata.com/2008/03/minethatdata-e-mail-analytics-and-data.html
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cols_set = set(['recency', 'history', 'spend'])
select_cols = [i for i, col in enumerate(header) if col in cols_
set]

4.	 Set up the following RDDs:
header_rdd = lines.filter(lambda l: 'recency' in l)
noheader_rdd = lines.subtract(header_rdd)
temp = noheader_rdd.map(lambda v: list(csv.reader([v]))[0])\
                   .map(lambda p: (int(p[select_cols[0]]),
                        dl.data.centify(p[select_cols[1]]),
                        dl.data.centify(p[select_cols[2]])))

# spend > 0
temp = temp.filter(lambda x: x[2] > 0)

5.	 Cluster the data with the k-means algorithm:
points = []
clusters = None

for i in range(2, 28):
    clusters = KMeans.train(temp, i, maxIterations=10,
                            runs=10, initializationMode="random")

    val = temp.map(lambda point: error(point, clusters))\
              .reduce(lambda x, y: x + y)
    points.append((i, val))

6.	 Plot the clusters, as follows:
dl.options.mimic_seaborn()
fig, [ax, ax2] = plt.subplots(2, 1)
ax.set_title('k-means Clusters')
ax.set_xlabel('Number of clusters')
ax.set_ylabel('WSSSE')
dl.plotting.plot_points(ax, points)

collected = temp.collect()
recency, history, spend = zip(*collected)
indices = [clusters.predict(c) for c in collected]
ax2.set_title('Clusters for spend, history and recency')
ax2.set_xlabel('history (cents)')
ax2.set_ylabel('spend (cents)')
markers = dl.plotting.map_markers(indices)
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colors = dl.plotting.sample_hex_cmap(name='hot', 
ncolors=len(set(recency)))

for h, s, r, m in zip(history, spend, recency, markers):
    ax2.scatter(h, s, s=20 + r, marker=m, c=colors[r-1])

cma = mpl.colors.ListedColormap(colors, name='from_list', N=None)
norm = Normalize(min(recency), max(recency))
msm = mpl.cm.ScalarMappable(cmap=cma, norm=norm)
msm.set_array([])
fig.colorbar(msm, label='Recency')

for i, center in enumerate(clusters.clusterCenters):
    recency, history, spend = center
    ax2.text(history, spend, str(i))

plt.tight_layout()
plt.show()

Refer to the following screenshot for the end result (the numbers in the plot correspond to 
cluster centers):



Chapter 5

165

How it works…
K-means clustering assigns data points to k clusters. The problem of clustering is not solvable 
directly, but we can apply heuristics, which achieve an acceptable result. The algorithm for 
k-means iterates between two steps not including the (usually random) initialization of k-means:

ff Assign each data point a cluster with the lowest WCSS mean

ff Recalculate the center of the cluster as the mean of the cluster points coordinates

The algorithm stops when the cluster assignments become stable.

There's more…
Spark 1.5.0 added experimental support to stream K-means. Due to the experimental nature 
of these new features, I decided to not discuss them in detail. I have added the following 
example code in the streaming_clustering.py file in this book's code bundle:

import dautil as dl
from pyspark.mllib.clustering import StreamingKMeansModel
from pyspark import SparkContext

csv_file = dl.data.get_direct_marketing_csv()
csv_rows = dl.data.read_csv(csv_file)

stkm = StreamingKMeansModel(28 * [[0., 0., 0.]], 28 * [1.])
sc = SparkContext()

for row in csv_rows:
    spend = dl.data.centify(row['spend'])

    if spend > 0:
        history = dl.data.centify(row['history'])
        data = sc.parallelize([[int(row['recency']),
                               history, spend]])
        stkm = stkm.update(data, 0., 'points')

print(stkm.centers)

See also
ff Building Machine Learning Systems with Python, Willi Richert, and Luis Pedro  

Coelho (2013)

ff The Wikipedia page about K-means clustering is at https://en.wikipedia.org/
wiki/K-means_clustering (retrieved September 2015)

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering
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6
Signal Processing  

and Timeseries

In this chapter, we will cover the following recipes:

ff Spectral analysis with periodograms

ff Estimating power spectral density with the Welch method

ff Analyzing peaks

ff Measuring phase synchronization

ff Exponential smoothing

ff Evaluating smoothing

ff Using the Lomb-Scargle periodogram

ff Analyzing the frequency spectrum of audio

ff Analyzing signals with the discrete cosine transform

ff Block bootstrapping time series data

ff Moving block bootstrapping time series data

ff Applying the discrete wavelet transform

Introduction
Time is an important dimension in science and daily life. Time series data is abundant and 
requires special techniques. Usually, we are interested in trends and seasonality or periodicity. 
In mathematical terms, this means that we try to represent the data by (usually linear) 
polynomial or trigonometric functions, or a combination of both.
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When we investigate seasonality, we generally distinguish between time domain and 
frequency domain analysis. In the time domain, we can use a dozen pandas functions for 
rolling windows. We can also smooth data to remove noise while hopefully keeping enough of 
the signal. Smoothing is in many respects similar to fitting, which is convenient because we 
can reuse some of the regression tools we know.

To get in the frequency domain, we apply transforms such as the fast Fourier Transform and 
discrete cosine transform. We can then further analyze signals with periodograms.

Spectral analysis with periodograms
We can think of periodic signals as being composed of multiple frequencies. For instance, 
sound is composed of multiple tones and light is composed of multiple colors. The range of 
frequencies is called the frequency spectrum. When we analyze the frequency spectrum of 
a signal, it's natural to take a look at the result of the Fourier Transform of the signal. The 
periodogram extends this and is equal to the squared magnitude of the Fourier Transform,  
as follows:
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We will look at the periodograms of the following variables:

ff Rain values from the KNMI De Bilt weather data

ff The second difference (comparable to second derivative in calculus) of the  
rain values

ff The rolling sum of the rain values using a window of 365 days

ff The rolling mean of the rain values using a window of 365 days

How to do it...
1.	 The imports are as follows:

from scipy import signal
import matplotlib.pyplot as plt
import dautil as dl
import numpy as np
import pandas as pd
from IPython.display import HTML

2.	 Load the data as follows:
fs = 365
rain = dl.data.Weather.load()['RAIN'].dropna()
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3.	 Define the following function to plot periodograms:
def plot_periodogram(arr, ax):
    f, Pxx_den = signal.periodogram(arr, fs)
    ax.set_xlabel('Frequency (Hz)')
    ax.set_ylabel('PSD')
    ax.semilogy(f, Pxx_den)

4.	 Plot the periodograms with the following code:
sp = dl.plotting.Subplotter(2, 2, context)
sp.label()
plot_periodogram(rain, sp.ax)
sp.label(advance=True)
plot_periodogram(np.diff(rain, 2), sp.ax)
sp.label(advance=True)
plot_periodogram(pd.rolling_sum(rain, fs).dropna(), sp.ax)
sp.label(advance=True)
plot_periodogram(pd.rolling_mean(rain, fs).dropna(), sp.ax)
HTML(sp.exit())

Refer to the following screenshot for the end result:
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The code is from the periodograms.ipynb file in this book's code bundle demonstrates 
periodograms.

See also
ff The documentation for the periodogram() function at https://docs.

scipy.org/doc/scipy-0.16.0/reference/generated/scipy.signal.
periodogram.html#scipy.signal.periodogram (retrieved September 2015)

ff The relevant Wikipedia page at https://en.wikipedia.org/wiki/Spectral_
density_estimation (retrieved September 2015)

Estimating power spectral density with the 
Welch method

The Welch method is an improvement (it reduces noise) of the periodogram technique and is 
named after P.D. Welch. The noise of the power spectrum is reduced with the following steps:

1.	 We split the signal with a fixed number of overlapping points. If the overlap is 0, then 
we have Bartlett's method.

2.	 In the time domain, we apply window functions to each of the segments of step 1.

3.	 We compute the periodogram for each segment as explained in the Spectral analysis 
with periodograms recipe.

4.	 We average the periodograms, thus reducing noise. Averaging effectively smoothens 
the signal. However, we are now dealing with frequency bins (like in a histogram).

We will also explore the Fano factor, which is given as follows:
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It is a windowed variance-to-mean ratio. Dividing by the mean basically normalizes the values, 
and we get a normalized measure of dispersion. As input data we will use temperature data.

How to do it...
1.	 The imports are as follows:

from scipy import signal
import matplotlib.pyplot as plt
import dautil as dl
from IPython.display import HTML

https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.signal.periodogram.html#scipy.signal.periodogram
https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.signal.periodogram.html#scipy.signal.periodogram
https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.signal.periodogram.html#scipy.signal.periodogram
https://en.wikipedia.org/wiki/Spectral_density_estimation
https://en.wikipedia.org/wiki/Spectral_density_estimation
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2.	 Load the data and compute the Fano factor:
fs = 365
temp = dl.data.Weather.load()['TEMP'].dropna()
fano_factor = dl.ts.fano_factor(temp, fs)

3.	 Define the following function to plot the periodograms:
def plot_welch(arr, ax):
    f, Pxx_den = signal.welch(arr, fs)
    ax.semilogy(f, Pxx_den)

4.	 Plot the input data and corresponding periodograms:
sp = dl.plotting.Subplotter(2, 2, context)
temp.plot(ax=sp.ax)
sp.label(ylabel_params=dl.data.Weather.get_header('TEMP'))
sp.label(advance=True)
sp.ax.plot(temp.index, fano_factor)
sp.label(advance=True)
plot_welch(temp, sp.ax)
sp.label(advance=True)
plot_welch(fano_factor.dropna(), sp.ax)
HTML(sp.exit())

Refer to the following screenshot for the end result:

The code is in the estimating_welch.ipynb file in this book's code bundle.
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See also
ff The Wikipedia page about the Fano factor at https://en.wikipedia.org/wiki/

Fano_factor (retrieved September 2015)

ff The Wikipedia page about the Welch method at https://en.wikipedia.org/
wiki/Welch's_method (retrieved September 2015)

ff The welch() function documented at https://docs.scipy.org/doc/scipy/
reference/generated/scipy.signal.welch.html#scipy.signal.welch 
(retrieved September 2015)

Analyzing peaks
The analysis of peaks is similar to that of valleys, since both are extreme values. SciPy has the 
argrelmax() function that finds the relative maxima. When we apply this function to daily 
temperature values, it not only finds hot days in summer but also hot days in winter unless we 
make the function consider a larger time frame. Of course, we can also check whether values 
are above a threshold or only select summer data using prior knowledge.

When we analyze peaks in time series data, we can apply two approaches. The first approach 
is to consider the highest peaks in a year, a month, or another fixed time interval and build 
a series with those values. The second approach is to define any value above a threshold 
as a peak. In this recipe, we will use the 95th percentile as the threshold. In the context of 
this approach, we can have multiple peaks in a sequence. Long streaks can have a negative 
impact, for instance, in the case of heat waves.

How to do it...
1.	 The imports are as follows:

import dautil as dl
from scipy import signal
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import HTML

2.	 Load and resample the data:
temp = dl.data.Weather.load()['TEMP'].dropna()
monthly = temp.resample('M')

https://en.wikipedia.org/wiki/Fano_factor
https://en.wikipedia.org/wiki/Fano_factor
https://en.wikipedia.org/wiki/Welch's_method
https://en.wikipedia.org/wiki/Welch's_method
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html#scipy.signal.welch
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.welch.html#scipy.signal.welch
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3.	 Plot peaks and note that hot days in winter are also considered:
sp = dl.plotting.Subplotter(2, 2, context)
max_locs = signal.argrelmax(monthly.values)
sp.ax.plot(monthly.index, monthly, label='Monthly means')
sp.ax.plot(monthly.index[max_locs], monthly.values[max_locs], 
           'o', label='Tops')
sp.label(ylabel_params=dl.data.Weather.get_header('TEMP'))

4.	 Plot the annual maximum series:
annual_max = dl.ts.groupby_year(temp).max()
sp.next_ax().plot(annual_max.index, annual_max, label='Annual 
Maximum Series')
dl.plotting.plot_polyfit(sp.ax, annual_max.index, annual_max.
values)
sp.label(ylabel_params=dl.data.Weather.get_header('TEMP'))

5.	 Plot the longest annual streaks of hot days over the 95th percentile threshold:
_, threshhold = dl.stats.outliers(temp, method='percentiles')
over_threshhold = temp > threshhold
streaks = dl.ts.groupby_year(over_threshhold).apply(
    lambda x: dl.collect.longest_streak(x, 1))
sp.next_ax().plot(streaks.index, streaks)
dl.plotting.plot_polyfit(sp.ax, streaks.index, streaks.values)
over_threshhold = dl.ts.groupby_year(over_threshhold).mean()
sp.label()

6.	 Plot the annual maximum series distribution:
sp.label(advance=True)
sns.distplot(annual_max, ax=sp.ax)
sp.label(xlabel_params=dl.data.Weather.get_header('TEMP'))
HTML(sp.exit())
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Refer to the following screenshot for the end result:

The code is in the analyzing_peaks.ipynb file in this book's code bundle.

See also
ff The argrelmax() function documented at https://docs.scipy.org/doc/

scipy/reference/generated/scipy.signal.argrelmax.html (retrieved 
September 2015)

Measuring phase synchronization
Two signals can be fully synchronized, not synchronized, or somewhere in between. We usually 
measure phase synchronization in radians. The related quantity of instantaneous phase 
can be measured with the NumPy angle() function. For real-valued data, we need to obtain 
the analytic representation of the signal, which is given by the Hilbert transform. The Hilbert 
transform is also available in SciPy and NumPy.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelmax.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.argrelmax.html
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Cross-correlation measures the correlation between two signals using a sliding inner product. 
We can use cross-correlation to measure the time delay between two signals. NumPy offers 
the correlate() function, which calculates the cross-correlation between two arrays.

How to do it...
1.	 The imports are as follows:

import dautil as dl
import matplotlib.pyplot as plt
import numpy as np
from IPython.display import HTML

2.	 Load the data and calculate the instantaneous phase:
df = dl.data.Weather.load().dropna()
df = dl.ts.groupby_yday(df).mean().dropna()
ws_phase = dl.ts.instant_phase(df['WIND_SPEED'])
wd_phase = dl.ts.instant_phase(df['WIND_DIR'])

3.	 Plot the wind direction and speed z-scores:
sp = dl.plotting.Subplotter(2, 2, context)
cp = dl.plotting.CyclePlotter(sp.ax)
cp.plot(df.index, dl.stats.zscores(df['WIND_DIR'].values),
       label='Wind direction')
cp.plot(df.index, dl.stats.zscores(df['WIND_SPEED'].values),
       label='Wind speed')
sp.label()

4.	 Plot the instantaneous phase as follows:
cp = dl.plotting.CyclePlotter(sp.next_ax())
cp.plot(df.index, ws_phase, label='Wind speed')
cp.plot(df.index, wd_phase, label='Wind direction')
sp.label()

5.	 Plot the correlation of wind speed and direction:
sp.label(advance=True)
sp.ax.plot(np.correlate(df['WIND_SPEED'], df['WIND_DIR'], 'same'))

6.	 Plot the phase shift with the fast Fourier Transform:
sp.label(advance=True)
sp.ax.plot(np.angle(np.fft.fft(df['WIND_SPEED'])/np.fft.
fft(df['WIND_DIR'])))
HTML(sp.exit())
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Refer to the following screenshot for the end result:

The code for this recipe is in the phase_synchrony.ipynb file in this book's code bundle.

See also
ff The instantaneous phase Wikipedia page at https://en.wikipedia.org/wiki/

Instantaneous_phase (retrieved September 2015)

ff The analytic signal Wikipedia page at https://en.wikipedia.org/wiki/
Analytic_signal (retrieved September 2015)

ff The Wikipedia page about cross-correlation at https://en.wikipedia.org/
wiki/Cross-correlation (retrieved September 2015)

ff The documentation for the angle() function at https://docs.scipy.org/doc/
numpy/reference/generated/numpy.angle.html (retrieved September 2015)

ff The documentation for the correlate() function at https://docs.scipy.
org/doc/numpy/reference/generated/numpy.correlate.html (retrieved 
September 2015)

https://en.wikipedia.org/wiki/Instantaneous_phase
https://en.wikipedia.org/wiki/Instantaneous_phase
https://en.wikipedia.org/wiki/Analytic_signal
https://en.wikipedia.org/wiki/Analytic_signal
https://en.wikipedia.org/wiki/Cross-correlation
https://en.wikipedia.org/wiki/Cross-correlation
https://docs.scipy.org/doc/numpy/reference/generated/numpy.angle.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.angle.html
https://docs.scipy.org/doc/numpy/r
https://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.correlate.html


Chapter 6

177

Exponential smoothing
Exponential smoothing is a low-pass filter that aims to remove noise. In this recipe, we will 
apply single and double exponential smoothing, as shown by the following equations:
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Single exponential smoothing (6.3) requires the smoothing factor α, where 0 < α < 1.  
Double exponential smoothing (6.4 and 6.5) attempts to handle trends in data via the  
trend smoothing factor β, where 0 < β < 1.

We will also take a look at rolling deviations of wind speed, which are similar to z-scores, but 
they are applied to a rolling window. Smoothing is associated with regression, although the 
goal of smoothing is to get rid of noise. Nevertheless, metrics related to regression, such as 
the Mean Squared Error (MSE), are also appropriate for smoothing.

How to do it...
1.	 The imports are as follows:

import dautil as dl
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from IPython.display import HTML

2.	 Define the following function to help visualize the result of double exponential 
smoothing:
def grid_mse(i, j, devs):
    alpha = 0.1 * i
    beta = 0.1 * j
    cell = dl.ts.double_exp_smoothing(devs.values, alpha, beta)

    return dl.stats.mse(devs, cell)
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3.	 Load the wind speed data and calculate annual means and rolling deviations:
wind = dl.data.Weather.load()['WIND_SPEED'].dropna()
wind = dl.ts.groupby_year(wind).mean()
devs = dl.ts.rolling_deviations(wind, 12).dropna()

4.	 Plot the annual means of the wind speed data:
sp = dl.plotting.Subplotter(2, 2, context)
sp.label(ylabel_params=dl.data.Weather.get_header('WIND_SPEED'))
sp.ax.plot(wind.index, wind)

5.	 Plot the rolling deviations with an α of 0.7:
cp = dl.plotting.CyclePlotter(sp.next_ax())
cp.plot(devs.index, devs, label='Rolling Deviations')
cp.plot(devs.index, dl.ts.exp_smoothing(devs.values, 0.7), 
label='Smoothing')
sp.label()

6.	 Plot the MSE for varying smoothing factors:
alphas = 0.01 * np.arange(1, 100)
errors = [dl.stats.mse(devs, dl.ts.exp_smoothing(devs.values, 
alpha)
          for alpha in alphas]
sp.label(advance=True)
sp.ax.plot(alphas, errors)

7.	 Plot the MSE for a grid of α and β values:
sp.label(advance=True)
rng = range(1, 10)
df = dl.report.map_grid(rng, rng, ["alpha", "beta", "mse"], grid_
mse, devs) 
sns.heatmap(df, cmap='Blues', square=True, annot=True, fmt='.1f',
            ax=sp.ax)

HTML(sp.exit())
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Refer to the following screenshot for the end result:

The code is in the exp_smoothing.ipynb file in this book's code bundle.

See also
ff The Wikipedia page about exponential smoothing at https://en.wikipedia.

org/wiki/Exponential_smoothing (retrieved September 2015)

https://en.wikipedia.org/wiki/Exponential_smoothing
https://en.wikipedia.org/wiki/Exponential_smoothing
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Evaluating smoothing
Many aspects of smoothing are comparable to regression; therefore, you can apply some of 
the techniques in Chapter 10, Evaluating Classifiers, Regressors, and Clusters, to smoothing 
too. In this recipe, we will smooth with the Savitzky-Golay filter, which conforms to the 
following equation:
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The filter fits points within a rolling window of size n to a polynomial of order m. Abraham 
Savitzky and Marcel J. E. Golay created the algorithm around 1964 and first applied it to 
chemistry problems. The filter has two parameters that naturally form a grid. As in regression 
problems, we will take a look at a difference, in this case, the difference between the original 
signal and the smoothed signal. We assume, just like when we fit data, that the residuals are 
random and follow a Gaussian distribution.

How to do it...
The following steps are from the eval_smooth.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import dautil as dl
import matplotlib.pyplot as plt
from scipy.signal import savgol_filter
import pandas as pd
import numpy as np
import seaborn as sns
from IPython.display import HTML

2.	 Define the following helper functions:
def error(data, fit):
    return data - fit

def win_rng():
    return range(3, 25, 2)

def calc_mape(i, j, pres):
    return dl.stats.mape(pres, savgol_filter(pres, i, j))
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3.	 Load the atmospheric pressure data as follows:
pres = dl.data.Weather.load()['PRESSURE'].dropna()
pres = pres.resample('A')

4.	 Plot the original data and the filter with window size 11 and various polynomial orders:
sp = dl.plotting.Subplotter(2, 2, context)
cp = dl.plotting.CyclePlotter(sp.ax)
cp.plot(pres.index, pres, label='Pressure')
cp.plot(pres.index, savgol_filter(pres, 11, 2), label='Poly order 
2')
cp.plot(pres.index, savgol_filter(pres, 11, 3), label='Poly order 
3')
cp.plot(pres.index, savgol_filter(pres, 11, 4), label='Poly order 
4')
sp.label(ylabel_params=dl.data.Weather.get_header('PRESSURE'))

5.	 Plot the standard deviations of the filter residuals for varying window sizes:
cp = dl.plotting.CyclePlotter(sp.next_ax())
stds = [error(pres, savgol_filter(pres, i, 2)).std()
        for i in win_rng()]
cp.plot(win_rng(), stds, label='Filtered')
stds = [error(pres, pd.rolling_mean(pres, i)).std()
        for i in win_rng()]
cp.plot(win_rng(), stds, label='Rolling mean')
sp.label()

6.	 Plot the box plots of the filter residuals:
sp.label(advance=True)
sp.ax.boxplot([error(pres, savgol_filter(pres, i, 2))
            for i in win_rng()])
sp.ax.set_xticklabels(win_rng())

7.	 Plot the MAPE for a grid of window sizes and polynomial orders:
sp.label(advance=True)
df = dl.report.map_grid(win_rng()[1:], range(1, 5),
                 ['win_size', 'poly', 'mape'], calc_mape, pres)
sns.heatmap(df, cmap='Blues', ax=sp.ax)
HTML(sp.exit())
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Refer to the following screenshot for the end result:

See also
ff The Wikipedia page about the Savitzky-Golay filter at https://en.wikipedia.

org/wiki/Savitzky%E2%80%93Golay_filter (retrieved September 2015)

ff The savgol_filter() function documented at https://docs.scipy.org/
doc/scipy/reference/generated/scipy.signal.savgol_filter.html 
(retrieved September 2015)

https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter
https://en.wikipedia.org/wiki/Savitzky%E2%80%93Golay_filter
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Using the Lomb-Scargle periodogram
The Lomb-Scargle periodogram is a frequency spectrum estimation method that fits sines 
to data, and it is frequently used with unevenly sampled data. The method is named after 
Nicholas R. Lomb and Jeffrey D. Scargle. The algorithm was published around 1976 and 
has been improved since then. Scargle introduced a time delay parameter, which separates 
the sine and cosine waveforms. The following equations define the time delay (6.7) and 
periodogram (6.8).
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How to do it...
1.	 The imports are as follows:

from scipy import signal
import numpy as np
import matplotlib.pyplot as plt
import dautil as dl
import statsmodels.api as sm
from IPython.display import HTML

2.	 Load the sunspots data as follows:
df = sm.datasets.sunspots.load_pandas().data
sunspots = df['SUNACTIVITY'].values
size = len(sunspots)
t = np.linspace(-2 * np.pi, 2 * np.pi, size)
sine = dl.ts.sine_like(sunspots)
f = np.linspace(0.01, 2, 10 * size)

3.	 Plot a sine waveform as follows:
sp = dl.plotting.Subplotter(2, 2, context)
sp.ax.plot(t, sine)
sp.label()

sp.next_ax().plot(df['YEAR'], df['SUNACTIVITY'])
sp.label()
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4.	 Apply the periodogram to the sine:
pgram = signal.lombscargle(t, sine, f)
sp.next_ax().plot(f, 2 * np.sqrt(pgram/size))
sp.label()

5.	 Apply the periodogram to the sunspots data:
pgram = signal.lombscargle(np.arange(size, dtype=float), sunspots, 
f)
sp.next_ax().plot(f, 2 * np.sqrt(pgram/size))
sp.label()
HTML(sp.exit())

Refer to the following screenshot for the end result:

The preceding code is a breakdown of the lomb_scargle.ipynb file in this book's  
code bundle.
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See also
ff The relevant Wikipedia page at https://en.wikipedia.org/wiki/Least-

squares_spectral_analysis (retrieved September 2015)

ff The lombscargle() function documented at https://docs.scipy.org/doc/
scipy/reference/generated/scipy.signal.lombscargle.html (retrieved 
September 2015)

Analyzing the frequency spectrum of audio
We can apply many techniques to analyze audio, and, therefore, we can debate at length 
about which techniques are most appropriate. The most obvious method is purportedly 
the FFT. As a variation, we can use the short-time Fourier transform (STFT). The STFT 
splits the signal in the time domain into equal parts, and it then applies the FFT to each 
segment. Another algorithm we will use is the cepstrum, which was originally used to analyze 
earthquakes but was later successfully applied to speech analysis. The power cepstrum is 
given by the following equation:

( ) ( ){ }( ){ }
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The algorithm is as follows:

1.	 Calculate the Fourier transform.

2.	 Compute the squared magnitude of the transform.

3.	 Take the logarithm of the previous result.

4.	 Apply the inverse Fourier transform.

5.	 Calculate the squared magnitude again.

The cepstrum is, in general, useful when we have large changes in the frequency domain. An 
important use case of the cepstrum is to form feature vectors for audio classification. This 
requires a mapping from frequency to the mel scale (refer to the Wikipedia page mentioned  
in the See also section).

https://en.wikipedia.org/wiki/Least-squares_spectral_analysis
https://en.wikipedia.org/wiki/Least-squares_spectral_analysis
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lombscargle.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.lombscargle.html
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How to do it...
1.	 The imports are as follows:

import dautil as dl
import matplotlib.pyplot as plt
import numpy as np
from ch6util import read_wav
from IPython.display import HTML

2.	 Define the following function to calculate the magnitude of the signal with FFT:
def amplitude(arr):
    return np.abs(np.fft.fft(arr))

3.	 Load the data as follows:
rate, audio = read_wav()

4.	 Plot the audio waveform:
sp = dl.plotting.Subplotter(2, 2, context)
t = np.arange(0, len(audio)/float(rate), 1./rate)
sp.ax.plot(t, audio)
freqs = np.fft.fftfreq(audio.size, 1./rate)
indices = np.where(freqs > 0)[0]
sp.label()

5.	 Plot the amplitude spectrum:
magnitude = amplitude(audio)
sp.next_ax().semilogy(freqs[indices], magnitude[indices])
sp.label()

6.	 Plot the cepstrum as follows:
cepstrum = dl.ts.power(np.fft.ifft(np.log(magnitude ** 2)))
sp.next_ax().semilogy(cepstrum)
sp.label()

7.	 Plot the STFT as a contour diagram:
npieces = 200
stft_amps = []

for i, c in enumerate(dl.collect.chunk(audio[: npieces ** 2], 
len(audio)/npieces)):
    amps = amplitude(c)
    stft_amps.extend(amps)
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stft_freqs = np.linspace(0, rate, npieces)
stft_times = np.linspace(0, len(stft_amps)/float(rate), npieces)
sp.next_ax().contour(stft_freqs/rate, stft_freqs,
           np.log(stft_amps).reshape(npieces, npieces))
sp.label()
    
HTML(sp.exit())

Refer to the following screenshot for the end result:

The example code is in the analyzing_audio.ipynb file in this book's code bundle.
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See also
ff The Wikipedia page about the STFT at https://en.wikipedia.org/wiki/

Short-time_Fourier_transform (retrieved September 2015)

ff The Wikipedia page about the cepstrum at https://en.wikipedia.org/wiki/
Cepstrum (retrieved September 2015)

ff The Wikipedia page about the mel scale at https://en.wikipedia.org/wiki/
Mel_scale (retrieved September 2015)

Analyzing signals with the discrete cosine 
transform

The discrete cosine transform (DCT) is a transform similar to the Fourier transform, but it 
tries to represent a signal by a sum of cosine terms only (refer to equation 6.11). The DCT is 
used for signal compression and in the calculation of the mel frequency spectrum, which I 
mentioned in the Analyzing the frequency spectrum of audio recipe. We can convert normal 
frequencies to the mel frequency (a frequency more appropriate for the analysis of speech 
and music) with the following equation:
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The steps to create the mel frequency spectrum are not complicated, but there are quite a few 
of them. The relevant Wikipedia page is available at https://en.wikipedia.org/wiki/
Mel-frequency_cepstrum (retrieved September 2015). If you do a quick web search, 
you can find a couple of Python libraries that implement the algorithm. I implemented a very 
simple version of the computation in this recipe.

https://en.wikipedia.org/wiki/Short-time_Fourier_transform
https://en.wikipedia.org/wiki/Short-time_Fourier_transform
https://en.wikipedia.org/wiki/Cepstrum
https://en.wikipedia.org/wiki/Cepstrum
https://en.wikipedia.org/wiki/Mel_scale
https://en.wikipedia.org/wiki/Mel_scale
https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
https://en.wikipedia.org/wiki/Mel-frequency_cepstrum
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How to do it...
1.	 The imports are as follows:

import dautil as dl
from scipy.fftpack import dct
import matplotlib.pyplot as plt
import ch6util
import seaborn as sns
import numpy as np
from IPython.display import HTML

2.	 Load the data and transform it as follows:
rate, audio = ch6util.read_wav()
transformed = dct(audio)

3.	 Plot the amplitude spectrum using DCT:
sp = dl.plotting.Subplotter(2, 2, context)
freqs = np.fft.fftfreq(audio.size, 1./rate)
indices = np.where(freqs > 0)[0]
sp.ax.semilogy(np.abs(transformed)[indices])
sp.label()

4.	 Plot the distribution of the amplitude:
sns.distplot(np.log(np.abs(transformed)), ax=sp.next_ax())
sp.label()

5.	 Plot the distribution of the phase:
sns.distplot(np.angle(transformed), ax=sp.next_ax())
sp.label()

6.	 Plot the mel amplitude spectrum as follows:
magnitude = ch6util.amplitude(audio)
cepstrum = dl.ts.power(np.fft.ifft(np.log(magnitude ** 2)))
mel = 1127 * np.log(1 + freqs[indices]/700)
sp.next_ax().plot(mel, ch6util.amplitude(dct(np.
log(magnitude[indices] ** 2))))
sp.label()
HTML(sp.exit())
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Refer to the following screenshot for the end result:

The code for this recipe is in the analyzing_dct.ipynb file in this book's code bundle.

See also
ff The Wikipedia page about the mel scale at https://en.wikipedia.org/wiki/

Mel_scale (retrieved September 2015)

ff The Wikipedia page about the DCT at https://en.wikipedia.org/wiki/
Discrete_cosine_transform (retrieved September 2015)

https://en.wikipedia.org/wiki/Mel_scale
https://en.wikipedia.org/wiki/Mel_scale
https://en.wikipedia.org/wiki/Discrete_cosine_transform
https://en.wikipedia.org/wiki/Discrete_cosine_transform
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Block bootstrapping time series data
The usual bootstrapping method doesn't preserve the ordering of time series data, and it is, 
therefore, unsuitable for trend estimation. In the block bootstrapping approach, we split data 
into non-overlapping blocks of equal size and use those blocks to generate new samples. 
In this recipe, we will apply a very naive and easy-to-implement linear model with annual 
temperature data. The procedure for this recipe is as follows:

1.	 Split the data into blocks and generate new data samples.

2.	 Fit the data to a line or calculate the first differences of the new data.

3.	 Repeat the previous step to build a list of slopes or medians of the first differences.

How to do it...
1.	 The imports are as follows:

import dautil as dl
import random
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import seaborn as sns
import ch6util
from IPython.display import HTML

2.	 Define the following function to bootstrap the data:
def shuffle(temp, blocks):
    random.shuffle(blocks)
    df = pd.DataFrame({'TEMP': dl.collect.flatten(blocks)},
                      index=temp.index)
    df = df.resample('A')

    return df

3.	 Load the data and create blocks from it:
temp = dl.data.Weather.load()['TEMP'].resample('M').dropna()
blocks = list(dl.collect.chunk(temp.values, 100))
random.seed(12033)
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4.	 Plot a couple of random realizations as a sanity check:
sp = dl.plotting.Subplotter(2, 2, context)
cp = dl.plotting.CyclePlotter(sp.ax)
medians = []
slopes = []

for i in range(240):
    df = shuffle(temp, blocks)
    slopes.append(ch6util.fit(df))
    medians.append(ch6util.diff_median(df))
    
    if i < 5:
        cp.plot(df.index, df.values)
        
sp.label(ylabel_params=dl.data.Weather.get_header('TEMP'))

5.	 Plot the distribution of the first difference medians using the bootstrapped data:
sns.distplot(medians, ax=sp.next_ax(), norm_hist=True)
sp.label()

6.	 Plot the distribution of the linear regression slopes using the bootstrapped data:
sns.distplot(slopes, ax=sp.next_ax(), norm_hist=True)
sp.label()

7.	 Plot the confidence intervals for a varying number of bootstraps:
mins = []
tops = []
xrng = range(30, len(medians))

for i in xrng:
    min, max = dl.stats.outliers(medians[:i])
    mins.append(min)
    tops.append(max)

cp = dl.plotting.CyclePlotter(sp.next_ax())
cp.plot(xrng, mins, label='5 %')
cp.plot(xrng, tops, label='95 %')
sp.label()
HTML(sp.exit())
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Refer to the following screenshot for the end result:

The following code comes from the block_boot.ipynb file in this book's code bundle.

See also
ff The relevant Wikipedia page at https://en.wikipedia.org/wiki/Bootstrap

ping_%28statistics%29#Block_bootstrap (retrieved September 2015)

Moving block bootstrapping time series data
If you followed along with the Block bootstrapping time series data recipe, you are now aware 
of a simple bootstrapping scheme for time series data. The moving block bootstrapping 
algorithm is a bit more complicated. In this scheme, we generate overlapping blocks by 
moving a fixed size window, similar to the moving average. We then assemble the blocks  
to create new data samples.

https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29#Block_bootstrap
https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29#Block_bootstrap
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In this recipe, we will apply the moving block bootstrap to annual temperature data to 
generate lists of second difference medians and the slope of an AR(1) model. This is an 
autoregressive model with lag 1. Also, we will try to neutralize outliers and noise with a 
median filter.

How to do it...
The following code snippets are from the moving_boot.ipynb file in this book's  
code bundle:

1.	 The imports are as follows:
import dautil as dl
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import ch6util
from scipy.signal import medfilt
from IPython.display import HTML

2.	 Define the following function to bootstrap the data:
def shuffle(temp):
    indices = np.random.choice(start, n/12)
    sample = dl.collect.flatten([temp.values[i: i + 12] for i in 
indices])
    sample = medfilt(sample)
    df = pd.DataFrame({'TEMP': sample}, index=temp.
index[:len(sample)])
    df = df.resample('A', how=np.median)

    return df

3.	 Load the data as follows:
temp = dl.data.Weather.load()['TEMP'].resample('M', how=np.
median).dropna()
n = len(temp)
start = np.arange(n - 11)
np.random.seed(2609787)
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4.	 Plot a few random realizations as a sanity check:
sp = dl.plotting.Subplotter(2, 2, context)
cp = dl.plotting.CyclePlotter(sp.ax)
medians = []
slopes = []

for i in range(240):
    df = shuffle(temp)
    slopes.append(dl.ts.ar1(df.values.flatten())['slope'])
    medians.append(ch6util.diff_median(df, 2))

    if i < 5:
        cp.plot(df.index, df.values)
        
sp.label(ylabel_params=dl.data.Weather.get_header('TEMP'))

5.	 Plot the distribution of the second difference medians using the bootstrapped data:
sns.distplot(medians, ax=sp.next_ax())
sp.label()

6.	 Plot the distribution of the AR(1) model slopes using the bootstrapped data:
sns.distplot(slopes, ax=sp.next_ax())
sp.label()

7.	 Plot the confidence intervals for a varying number of bootstraps:
mins = []
tops = []
xrng = range(30, len(medians))

for i in xrng:
    min, max = dl.stats.outliers(medians[:i])
    mins.append(min)
    tops.append(max)

    
cp = dl.plotting.CyclePlotter(sp.next_ax())
cp.plot(xrng, mins, label='5 %')
cp.plot(xrng, tops, label='95 %')
sp.label()
HTML(sp.exit())
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Refer to the following screenshot for the end result:

See also
ff The relevant Wikipedia page at https://en.wikipedia.org/wiki/Bootstrap

ping_%28statistics%29#Block_bootstrap (retrieved September 2015)

ff The medfilt() documentation at https://docs.scipy.org/doc/scipy/
reference/generated/scipy.signal.medfilt.html (retrieved September 
2015)

https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29#Block_bootstrap
https://en.wikipedia.org/wiki/Bootstrapping_%28statistics%29#Block_bootstrap
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.medfilt.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.medfilt.html
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Applying the discrete wavelet transform
The discrete wavelet transform (DWT) captures information in both the time and frequency 
domains. The mathematician Alfred Haar created the first wavelet. We will use this Haar 
wavelet in this recipe too. The transform returns approximation and detail coefficients, 
which we need to use together to get the original signal back. The approximation coefficients 
are the result of a low-pass filter. A high-pass filter produces the detail coefficients. The Haar 
wavelet algorithm is of order O(n) and, similar to the STFT algorithm (refer to the Analyzing the 
frequency spectrum of audio recipe), combines frequency and time information.

The difference with the Fourier transform is that we express the signal as a sum of sine and 
cosine terms, while the wavelet is represented by a single wave (wavelet function). Just as in 
the STFT, we split the signal in the time domain and then apply the wavelet function to each 
segment. The DWT can have multiple levels in this recipe, we don't go further than the first 
level. To obtain the next level, we apply the wavelet to the approximation coefficients of the 
previous level. This means that we can have multiple level detail coefficients.

As the dataset, we will have a look at the famous Nile river flow, which even the Greek 
historian Herodotus wrote about. More recently, in the previous century, the hydrologist Hurst 
discovered a power law for the rescaled range of the Nile river flow in the year. Refer to the 
See also section for more information. The rescaled range is not difficult to compute, but there 
are lots of steps as described in the following equations:
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The Hurst exponent from the power law is an indicator of trends. We can also get the Hurst 
exponent with a more efficient procedure from the wavelet coefficients.
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Getting started
Install pywavelets, as follows:

$ pip install pywavelets 

I used pywavelets 0.3.0 for this recipe.

How to do it...
1.	 The imports are as follows:

from statsmodels import datasets
import matplotlib.pyplot as plt
import pywt
import pandas as pd
import dautil as dl
import numpy as np
import seaborn as sns
import warnings
from IPython.display import HTML

2.	 Filter warnings as follows (optional step):
warnings.filterwarnings(action='ignore',
                        message='.*Mean of empty slice.*')
warnings.filterwarnings(action='ignore',
                        message='.*Degrees of freedom <= 0 for 
slice.*')

3.	 Define the following function to calculate the rescaled range:
def calc_rescaled_range(X):
    N = len(X)

    # 1. Mean
    mean = X.mean()

    # 2. Y mean adjusted
    Y = X - mean

    # 3. Z cumulative deviates
    Z = np.array([Y[:i].sum() for i in range(N)])

    # 4. Range R
    R = np.array([0] + [np.ptp(Z[:i]) for i in range(1, N)])
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    # 5. Standard deviation S
    S = np.array([X[:i].std() for i in range(N)])

    # 6. Average partial R/S
    return [np.nanmean(R[:i]/S[:i]) for i in range(N)]

4.	 Load the data and transform it with a Haar wavelet:
data = datasets.get_rdataset('Nile', cache=True).data
cA, cD = pywt.dwt(data['Nile'].values, 'haar')
coeff = pd.DataFrame({'cA': cA, 'cD': cD})

5.	 Plot the Nile river flow as follows:
sp = dl.plotting.Subplotter(2, 2, context)
sp.ax.plot(data['time'], data['Nile'])
sp.label()

6.	 Plot the approximation and detail coefficients of the transformed data:
cp = dl.plotting.CyclePlotter(sp.next_ax())
cp.plot(range(len(cA)), cA, label='Approximation coefficients')
cp.plot(range(len(cD)), cD, label='Detail coefficients')
sp.label()

7.	 Plot the rescaled ranges of the coefficients as follows:
sp.next_ax().loglog(range(len(cA)), calc_rescaled_range(cA), 
                    label='Approximation coefficients')
sp.ax.loglog(range(len(cD)), calc_rescaled_range(cD), 
             label='Detail coefficients')
sp.label()

8.	 Plot the rescaled ranges of the Nile river flow data with a fit:
range_df = pd.DataFrame(data={'Year': data.index,
                              'Rescaled range':
                              calc_rescaled_range(data['Nile'])})
sp.next_ax().set(xscale="log", yscale="log")
sns.regplot('Year', 'Rescaled range', range_df, ax=sp.ax, order=1,
            scatter_kws={"s": 100})
sp.label()
HTML(sp.exit())
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Refer to the following screenshot for the end result:

The relevant code is in the discrete_wavelet.ipynb file in this book's code bundle.

See also
ff The Wikipedia page about the discrete wavelet transform at https://

en.wikipedia.org/wiki/Discrete_wavelet_transform (retrieved 
September 2015)

ff The Wikipedia page about the rescaled range at https://en.wikipedia.org/
wiki/Rescaled_range (retrieved September 2015)

ff The Wikipedia page about the Hurst exponent at https://en.wikipedia.org/
wiki/Hurst_exponent (retrieved September 2015)

https://en.wikipedia.org/wiki/Discrete_wavelet_transform
https://en.wikipedia.org/wiki/Discrete_wavelet_transform
https://en.wikipedia.org/wiki/Rescaled_range
https://en.wikipedia.org/wiki/Rescaled_range
https://en.wikipedia.org/wiki/Hurst_exponent
https://en.wikipedia.org/wiki/Hurst_exponent
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7
Selecting Stocks with 

Financial Data Analysis

In this chapter, we will cover the following recipes:

ff Computing simple and log returns

ff Ranking stocks with the Sharpe ratio and liquidity

ff Ranking stocks with the Calmar and Sortino ratios

ff Analyzing returns statistics

ff Correlating individual stocks with the broader market

ff Exploring risk and return

ff Examining the market with the non-parametric runs test

ff Testing for random walks

ff Determining market efficiency with autoregressive models

ff Creating tables for a stock prices database

ff Populating the stock prices database

ff Optimizing an equal weights two-asset portfolio
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Introduction
Finance deals with many subjects, such as money, saving, investing, and insurance. In this 
chapter, we will focus on stock investing because stock price data is abundant. According 
to academic theory, an average investor should not invest in individual stocks, but in whole 
markets, for instance, a basket of stocks representing large companies within a country. 
Economists make several such arguments for this theory. First, financial markets are random; 
therefore, beating an average basket by picking stocks is very difficult. Second, individual 
stocks are volatile with wild price swings. These price moves get averaged in a basket,  
which makes investing in a group of stocks less risky.

We will analyze stock prices, but nothing prevents you from reusing the recipes to analyze 
mutual funds and exchange traded funds or other financial assets. To keep the analysis 
simple, I limited the selection to half a dozen stocks for well-known U.S. companies, which are 
also represented in the S&P 500 stock index.

Computing simple and log returns
Returns measure the rate of change of (stock) prices. The advantage of using returns is 
that returns are dimensionless, so we can easily compare the returns of different financial 
securities. In contrast, the price of financial assets alone doesn't tell us much. In this chapter, 
we calculate daily returns because our data is sampled daily. With small adjustments, you 
should be able to apply the same analysis on different time frames.

In fact, there are various types of returns. For the purpose of basic analysis, we only need to 
know about simple (7.1) and log(arithmic) returns (7.2), as given by the following equations:
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Actually these types of returns can easily be converted – from simple to log returns and back. 
Log returns are the ones you should prefer if you are given the choice, because they are 
easier to compute.
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How to do it...
1.	 The imports are as follows:

import dautil as dl
import ch7util
import matplotlib.pyplot as plt

2.	 Download data for the S&P 500 index:
ohlc = dl.data.OHLC()
sp500 = ohlc.get('^GSPC')['Adj Close']
rets = sp500[1:]/sp500[:-1] - 1

3.	 Plot the simple and log returns:
_, ax = plt.subplots()
cp = dl.plotting.CyclePlotter(ax)
cp.plot(sp500.index, rets, label='Simple')
cp.plot(sp500.index[1:], ch7util.log_rets(sp500), label='Log')
ax.set_title('Simple and Log Returns')
ax.set_xlabel('Date')
ax.set_ylabel('Return')
ax.legend(loc='best')

Refer to the following screenshot for the end result (the values of simple and log returns are 
very close):

The code for this recipe is in the simple_log_rets.ipynb file in this book's code bundle.

See also
ff The relevant Wikipedia page at https://en.wikipedia.org/wiki/Rate_of_

return (retrieved October 2015)

https://en.wikipedia.org/wiki/Rate_of_return
https://en.wikipedia.org/wiki/Rate_of_return
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Ranking stocks with the Sharpe ratio and 
liquidity

The Sharpe ratio, defined by William Sharpe, is a fundamental investing metric. The ratio is 
given as follows:

( ) [ ] [ ]
[ ]

7.3
var

a b a b
a

a a b

E R R E R R
S

R Rσ
− −

= =
−

The ratio depends on the returns of the asset and the returns of a benchmark. We will use  
the S&P 500 index as the benchmark. The ratio is supposed to represent a reward to risk 
ratio. We want to maximize reward while minimizing risk, which corresponds to maximizing  
the Sharpe ratio.

Another important investing variable is liquidity. Cash is the ultimate liquid asset, but most 
other assets are less liquid, which means that they change value when we try to sell or buy 
them. We will use trading volume in this recipe as a measure of liquidity. (Trading volume 
corresponds to the number of transactions for a financial asset. Liquidity measures how  
liquid an asset is—how easy it is to buy or sell it.)

How to do it...
You can find the code in the sharpe_liquidity.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import numpy as np
import dautil as dl
import matplotlib.pyplot as plt
import ch7util

2.	 Define the following function to calculate the ratio and logarithm of the average 
trading volume:
def calc_metrics(ticker, ohlc):
    stock = ohlc.get(ticker)
    sp500 = ohlc.get('^GSPC')
    merged = ch7util.merge_sp500(stock, sp500)
    rets_stock = ch7util.log_rets(merged['Adj Close_stock'])
    rets_sp500 = ch7util.log_rets(merged['Adj Close_sp500'])
    stock_sp500 = rets_stock - rets_sp500
    sharpe_stock = stock_sp500.mean()/stock_sp500.std()
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    avg_vol = np.log(merged['Volume_stock'].mean())

    return (sharpe_stock, avg_vol)

3.	 Calculate the metrics for our basket of stocks from the ch7util module:
dfb = dl.report.DFBuilder(cols=['Ticker', 'Sharpe', 'Log(Average 
Volume)'])

ohlc = dl.data.OHLC()

for symbol in ch7util.STOCKS:
    sharpe, vol = calc_metrics(symbol, ohlc)
    dfb.row([symbol, sharpe, vol])

df = dfb.build(index=ch7util.STOCKS)

4.	 Plot the ratio and logarithm average volume for the stocks:
_, ax = plt.subplots()
ax.scatter(df['Log(Average Volume)'], df['Sharpe'])
dl.plotting.plot_polyfit(ax, df['Log(Average Volume)'], 
df['Sharpe'])

dl.plotting.plot_text(ax, df['Log(Average Volume)'],
                      df['Sharpe'], ch7util.STOCKS)
ax.set_xlabel('Log(Average Volume)')
ax.set_ylabel('Sharpe')
ax.set_title('Sharpe Ratio & Liquidity')

Refer to the following screenshot for the end result:
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See also
ff The relevant Wikipedia page at https://en.wikipedia.org/wiki/Sharpe_

ratio (retrieved October 2015)

Ranking stocks with the Calmar and  
Sortino ratios

The Sortino and Calmar ratios are performance ratios comparable to the Sharpe ratio (refer 
to the Ranking stocks with the Sharpe ratio and liquidity recipe). There are even more ratios; 
however, the Sharpe ratio has been around the longest, and is therefore very widely used.

The Sortino ratio is named after Frank Sortino, but it was defined by Brian Rom. The ratio 
defines risk as a downside variance below a benchmark. The benchmark can be an index  
or a fixed return such as zero. The ratio is defined as follows:

( )7.4 R TS
DR
−

=

R is the return of the asset, T the target benchmark, and DR the downside risk. The Calmar 
ratio was invented by Terry Young and was named after his company and newsletter. This ratio 
defines risk as the maximum drawdown (price fall from a peak to a bottom) of an asset.

How to do it...
The following is a breakdown of the calmar_sortino.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import numpy as np
import dautil as dl
import ch7util
from scipy.signal import argrelmin
from scipy.signal import argrelmax
import matplotlib.pyplot as plt

2.	 Define the following function to calculate the Sortino ratio:
def calc_sortino(rets):
    # Returns below target
    semi_var = rets[rets < 0] ** 2

https://en.wikipedia.org/wiki/Sharpe_ratio
https://en.wikipedia.org/wiki/Sharpe_ratio
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    semi_var = semi_var.sum()/len(rets)
    sortino = np.sqrt(semi_var)

    return rets.mean()/sortino

3.	 Define the following function to calculate the Calmar ratio:
def calc_calmar(rets):
    # Peaks and bottoms indexes in sequence
    mins = np.ravel(argrelmin(rets))
    maxs = np.ravel(argrelmax(rets))
    extrema = np.concatenate((mins, maxs))
    extrema.sort()

    return -rets.mean()/np.diff(rets[extrema]).min()

4.	 Compute the Calmar and Sortino ratios for our list of stocks:
ohlc = dl.data.OHLC()
dfb = dl.report.DFBuilder(cols=['Ticker', 'Sortino', 'Calmar'])

for symbol in ch7util.STOCKS:
    stock = ohlc.get(symbol)
    rets = ch7util.log_rets(stock['Adj Close'])
    sortino = calc_sortino(rets)
    calmar = calc_calmar(rets)
    dfb.row([symbol, sortino, calmar])

df = dfb.build(index=ch7util.STOCKS).dropna()

5.	 Plot the Sortino and Calmar ratios for the stocks:
_, ax = plt.subplots()
ax.scatter(df['Sortino'], df['Calmar'])
dl.plotting.plot_polyfit(ax, df['Sortino'], df['Calmar'])
dl.plotting.plot_text(ax, df['Sortino'], df['Calmar'], ch7util.
STOCKS)
ax.set_xlabel('Sortino')
ax.set_ylabel('Calmar')
ax.set_title('Sortino & Calmar Ratios')
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Refer to the following screenshot for the end result:

See also
ff The Wikipedia page about the Sortino ratio at https://en.wikipedia.org/

wiki/Sortino_ratio (retrieved October 2015)

ff The Wikipedia page about the Calmar ratio at https://en.wikipedia.org/
wiki/Calmar_ratio (retrieved October 2015)

Analyzing returns statistics
Returns, especially of stock indices, have been extensively studied. In the past, it was 
assumed that the returns are normally distributed. However, it is now clear that the returns 
distribution has fat tails (fatter than normal distributions). More information is available at 
https://en.wikipedia.org/wiki/Fat-tailed_distribution (retrieved October 
2015). It is easy enough to check whether data fits the normal distribution. All we need is the 
mean and standard deviation of the sample.

There are a number of topics that we will explore in this recipe:

ff The skewness and kurtosis of stock returns are interesting to study. Skewness is 
especially important in the context of stock option models. Analysts usually limit 
themselves to the mean and standard deviation, which are assumed to correspond  
to reward and risk, respectively.

ff If we are interested in the existence of a trend, then we should take a look at an 
autocorrelation plot. This is a plot of autocorrelation—that is, correlation between  
a signal and the signal at a certain lag (also explained in Python Data Analysis,  
Packt Publishing).

https://en.wikipedia.org/wiki/Sortino_ratio
https://en.wikipedia.org/wiki/Sortino_ratio
https://en.wikipedia.org/wiki/Calmar_ratio
https://en.wikipedia.org/wiki/Calmar_ratio
https://en.wikipedia.org/wiki/Fat-tailed_distribution
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ff We will also plot negative returns (absolute value thereof) and corresponding counts 
on a log-log scale, as those approximately seem to follow a power law (especially the 
tail values).

How to do it...
The analysis can be found in the rets_stats.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import dautil as dl
import ch7util
import matplotlib.pyplot as plt
from scipy.stats import skew
from scipy.stats import kurtosis
from pandas.tools.plotting import autocorrelation_plot
import numpy as np
from scipy.stats import norm
from IPython.display import HTML

2.	 Calculate returns for our stocks:
ohlc = dl.data.OHLC()
rets_dict = {}

for i, symbol in enumerate(ch7util.STOCKS):
    rets = ch7util.log_rets(ohlc.get(symbol)['Adj Close'])
    rets_dict[symbol] = rets

sp500 = ch7util.log_rets(ohlc.get('^GSPC')['Adj Close'])

3.	 Plot the histogram of the S&P 500 returns and corresponding theoretical normal 
distribution:
sp = dl.plotting.Subplotter(2, 2, context)
sp.ax.set_xlim(-0.05, 0.05)
_, bins, _ = sp.ax.hist(sp500, bins=dl.stats.sqrt_bins(sp500),
                     alpha=0.6, normed=True)
sp.ax.plot(bins, norm.pdf(bins, sp500.mean(), sp500.std()), lw=2)

4.	 Plot the skew and kurtosis of returns:
skews = [skew(rets_dict[s]) for s in ch7util.STOCKS]
kurts = [kurtosis(rets_dict[s]) for s in ch7util.STOCKS]
sp.label()

sp.next_ax().scatter(skews, kurts)
dl.plotting.plot_text(sp.ax, skews, kurts, ch7util.STOCKS)
sp.label()
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5.	 Plot the autocorrelation plot of the S&P 500 returns:
autocorrelation_plot(sp500, ax=sp.next_ax())
sp.label()

6.	 Plot the log-log plot of negative returns (absolute value) and counts:
# Negative returns
counts, neg_rets = np.histogram(sp500[sp500 < 0])
neg_rets = neg_rets[:-1] + (neg_rets[1] - neg_rets[0])/2
# Adding 1 to avoid log(0)
dl.plotting.plot_polyfit(sp.next_ax(), np.log(np.abs(neg_rets)),
                         np.log(counts + 1), plot_points=True)
sp.label()

HTML(sp.exit())

Refer to the following screenshot for the end result:
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Correlating individual stocks with the 
broader market

When we define a stock market or index, we usually choose stocks that are similar in some 
way. For instance, the stocks might be in the same country or continent. The position of birds 
can be roughly estimated from the position of the flock they belong to. Similarly, we expect 
stock returns to be correlated to their market, although not necessarily perfectly.

We will explore the following metrics:

ff The most obvious metric is purportedly the correlation coefficient of the individual 
stock returns and the S&P 500 index.

ff Another metric is the slope obtained from linear regression instead of correlation.

ff We can also analyze squared differences of returns somewhat similar to squared 
errors in regression diagnostics.

ff Instead of correlating returns, we can also correlate trading volumes and volatility. To 
measure volatility, we will use the somewhat uncommon squared value of high and 
low prices difference. Actually, we are supposed to divide this value by a constant; 
however, this is not necessary for the correlation coefficient calculation.

How to do it...
The analysis is in the correlating_market.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import ch7util
import dautil as dl
import numpy as np
import matplotlib.pyplot as plt
from IPython.display import HTML

2.	 Define the following function to compute the volatility:
def hl2(df, suffix):
    high = df['High_' + suffix]
    low = df['Low_' + suffix]

    return (high - low) ** 2
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3.	 Define the following function to correlate the S&P 500 and our stocks:
def correlate(stock, sp500):
    merged = ch7util.merge_sp500(stock, sp500)
    rets = ch7util.log_rets(merged['Adj Close_stock'])
    sp500_rets = ch7util.log_rets(merged['Adj Close_sp500'])
    result = {}

    result['corrcoef'] = np.corrcoef(rets, sp500_rets)[0][1]
    slope, _ = np.polyfit(sp500_rets, rets, 1)
    result['slope'] = slope

    srd = (sp500_rets - rets) ** 2
    result['msrd'] = srd.mean()
    result['std_srd'] = srd.std()

    result['vols'] = np.corrcoef(merged['Volume_stock'],
                                 merged['Volume_sp500'])[0][1]

    result['hl2'] = np.corrcoef(hl2(merged, 'stock'),
                                hl2(merged, 'sp500'))[0][1]

    return result

4.	 Correlate our set of stocks with the S&P 500 index:
ohlc = dl.data.OHLC()
dfs = [ohlc.get(stock) for stock in ch7util.STOCKS]
sp500 = ohlc.get('^GSPC')
corrs = [correlate(df, sp500) for df in dfs]

5.	 Plot correlation coefficients for the stocks:
sp = dl.plotting.Subplotter(2, 2, context)
dl.plotting.bar(sp.ax, ch7util.STOCKS,
                [corr['corrcoef'] for corr in corrs])
sp.label()

dl.plotting.bar(sp.next_ax(), ch7util.STOCKS,
                [corr['slope'] for corr in corrs])
sp.label()

6.	 Plot the squared difference statistics:
sp.next_ax().set_xlim([0, 0.001])
dl.plotting.plot_text(sp.ax, [corr['msrd'] for corr in corrs],
                      [corr['std_srd'] for corr in corrs],
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                      ch7util.STOCKS, add_scatter=True,
                      fontsize=9, alpha=0.6)
sp.label()

7.	 Plot volume and volatility correlation coefficients:
dl.plotting.plot_text(sp.next_ax(), [corr['vols'] for corr in 
corrs],
                      [corr['hl2'] for corr in corrs],
                      ch7util.STOCKS, add_scatter=True,
                      fontsize=9, alpha=0.6)
sp.label()

HTML(sp.exit())

Refer to the following screenshot for the end result:
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Exploring risk and return
Beta in finance is the slope of a linear regression model involving the returns of the asset and 
the returns of a benchmark, for instance the S&P 500 index. The model is defined as follows:

( ) , ,7.5 a t b t tr rα β ε= + +

According to the Capital Asset Pricing Model (CAPM), beta is a measure for risk. The 
expected return is given by the average of the returns. If we plot betas and expected returns 
for various securities, we obtain the security market line (SML) for the corresponding market. 
The intercept of the SML gives the risk-free rate, a return we should theoretically receive 
without taking any risk. In general, if an asset doesn't lie on the SML, then it is mispriced 
according to the CAPM.

How to do it...
The program is in the capm.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import dautil as dl
import numpy as np
import pandas as pd
import ch7util
import matplotlib.pyplot as plt

2.	 Define the following function to calculate the beta:
def calc_beta(symbol):
    ohlc = dl.data.OHLC()
    sp500 = ohlc.get('^GSPC')['Adj Close']
    stock = ohlc.get(symbol)['Adj Close']
    df = pd.DataFrame({'SP500': sp500, symbol: stock}).dropna()
    sp500_rets = ch7util.log_rets(df['SP500'])
    rets = ch7util.log_rets(df[symbol])
    beta, _ = np.polyfit(sp500_rets, rets, 1)

    # annualize & percentify
    return beta, 252 * rets.mean() * 100
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3.	 Compute betas and average returns for our stocks:
betas = []
means = []

for symbol in ch7util.STOCKS:
    beta, ret_mean = calc_beta(symbol)
    betas.append(beta)
    means.append(ret_mean)

4.	 Plot the results and the market security line:
_, ax = plt.subplots()
dl.plotting.plot_text(ax, betas, means, ch7util.STOCKS, add_
scatter=True)
dl.plotting.plot_polyfit(ax, betas, means)
ax.set_title('Capital Asset Pricing Model')
ax.set_xlabel('Beta')
ax.set_ylabel('Mean annual return (%)')

Refer to the following screenshot for the end result:

See also
ff The Wikipedia page about beta at https://en.wikipedia.org/wiki/

Beta_%28finance%29 (retrieved October 2015)

ff The Wikipedia page about the CAPM at https://en.wikipedia.org/wiki/
Capital_asset_pricing_model (retrieved October 2015)

https://en.wikipedia.org/wiki/Beta_%28finance%29
https://en.wikipedia.org/wiki/Beta_%28finance%29
https://en.wikipedia.org/wiki/Capital_asset_pricing_model
https://en.wikipedia.org/wiki/Capital_asset_pricing_model
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Examining the market with the  
non-parametric runs test

The efficient-market hypothesis (EMH) stipulates that you can't, on average, "beat the 
market" by picking better stocks or timing the market. According to the EMH, all information 
about the market is immediately available to every market participant in one form or another, 
and it is immediately reflected in asset prices, so investing is like playing a game of cards  
with all the cards revealed. The only way you can win is by betting on very risky stocks and 
getting lucky.

The French mathematician Bachelor developed a test for the EMH around 1900. The test 
examines consecutive occurrences of negative and positive price changes. We don't count 
events during which the price didn't change and only use them to end a run. These types of 
events are relatively rare anyway for liquid markets.

The statistical test itself is known outside finance and goes by the name of the Wald-
Wolfowitz runs test. If we denote positive changes with '+' and negative changes with '-', 
we can have the sequence '++++−−−+++−−++++++' with 5 runs. The following equations 
for the mean μ (7.6), standard deviation σ (7.7), and z-score Z (7.8) of the number of runs R 
also require the number of negative changes N-, positive changes N+, and total number of 
changes N:
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We assume that the number of runs follow a normal distribution, which gives us a way to 
potentially reject the randomness of runs at a confidence level of our choosing.

How to do it...
Have a look at the non_parametric.ipynb file in this book's code bundle.

1.	 The imports are as follows:
import dautil as dl
import numpy as np
import pandas as pd
import ch7util
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import matplotlib.pyplot as plt
from scipy.stats import norm
from IPython.display import HTML

2.	 Define the following function to count the number of runs:
def count_runs(signs):
    nruns = 0
    prev = None

    for s in signs:
        if s != 0 and s != prev:
            nruns += 1

        prev = s

    return nruns

3.	 Define the following function to calculate the mean, standard deviation, and z-score:
def proc_runs(symbol):
    ohlc = dl.data.OHLC()
    close = ohlc.get(symbol)['Adj Close'].values
    diffs = np.diff(close)
    nplus = (diffs > 0).sum()
    nmin = (diffs < 0).sum()
    n = nplus + nmin
    mean = (2 * (nplus * nmin) / n) + 1
    var = (mean - 1) * (mean - 2) / (n - 1)
    std = np.sqrt(var)
    signs = np.sign(diffs)
    nruns = count_runs(np.diff(signs))

    return mean, std, (nruns - mean) / std

4.	 Calculate the metrics for our stocks:
means = []
stds = []
zscores = []

for symbol in ch7util.STOCKS:
    mean, std, zscore = proc_runs(symbol)
    means.append(mean)
    stds.append(std)
    zscores.append(zscore)
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5.	 Plot the z-scores with a line indicating the 95% confidence level:
sp = dl.plotting.Subplotter(2, 1, context)
dl.plotting.plot_text(sp.ax, means, stds, ch7util.STOCKS, add_
scatter=True)
sp.label()

dl.plotting.bar(sp.next_ax(), ch7util.STOCKS, zscores)
sp.ax.axhline(norm.ppf(0.95), label='95 % confidence level')
sp.label()
HTML(sp.exit())

Refer to the following screenshot for the end result:

See also
ff The Wikipedia page about the Wald-Wolfowitz runs test at https://

en.wikipedia.org/wiki/Wald%E2%80%93Wolfowitz_runs_test  
(retrieved October 2015)

ff The Wikipedia page about the EMH at https://en.wikipedia.org/wiki/
Efficient-market_hypothesis (retrieved October 2015)

https://en.wikipedia.org/wiki/Wald%E2%80%93Wolfowitz_runs_test
https://en.wikipedia.org/wiki/Wald%E2%80%93Wolfowitz_runs_test
https://en.wikipedia.org/wiki/Efficient-market_hypothesis
https://en.wikipedia.org/wiki/Efficient-market_hypothesis
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Testing for random walks
The random walk hypothesis (RWH) just like the efficient-market hypothesis (refer to the 
Examining the market with the non-parametric runs test recipe) claims that the market cannot 
be beaten. The RWH stipulates that asset prices perform a random walk. You can in fact 
generate pretty convincing stock price charts just by flipping a coin repeatedly.

In 1988, finance professors Lo and MacKinlay constructed a test for the RWH using the 
natural log(arithm) of asset prices as data. The test specifies the log prices to drift around 
a mean (7.9). We expect price changes for different frequencies (for instance, one-day and 
two-day periods) to be random. Furthermore, the variances (7.10 and 7.11) at two different 
frequencies are related, and according to the following equations, the corresponding ratio 
(7.12) is normally distributed around zero:
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How to do it...
The code is in the random_walk.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import dautil as dl
import numpy as np
import matplotlib.pyplot as plt
import ch7util

2.	 Calculate the ratios for our stocks:
ratios = []

for symbol in ch7util.STOCKS:
    ohlc = dl.data.OHLC()
    P = ohlc.get(symbol)['Adj Close'].values
    N = len(P)
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    mu = (np.log(P[-1]) - np.log(P[0]))/N
    var_a = 0
    var_b = 0

    for k in range(1, N):
        var_a = (np.log(P[k]) - np.log(P[k - 1]) - mu) ** 2
        var_a = var_a / N

    for k in range(1, N//2):
        var_b = (np.log(P[2 * k]) - np.log(P[2 * k - 2]) - 2 * mu) 
** 2
        var_b = var_b / N

    ratios.append(np.sqrt(N) * (var_b/var_a - 1))

3.	 Plot the ratios, which we expect to be close to zero (7.12):
_, ax = plt.subplots()
dl.plotting.bar(ax, ch7util.STOCKS, ratios)
ax.set_title('Random Walk Test')
ax.set_ylabel('Ratio')

Refer to the following screenshot for the end result:

See also
ff The Wikipedia page about the random walk hypothesis at https://

en.wikipedia.org/wiki/Random_walk_hypothesis (retrieved October 2015)

ff Rev. Financ. Stud. (1988) 1 (1): 41-66. doi: 10.1093/rfs/1.1.41 at http://rfs.
oxfordjournals.org/content/1/1/41.full (retrieved October 2015)

https://en.wikipedia.org/wiki/Random_walk_hypothesis
https://en.wikipedia.org/wiki/Random_walk_hypothesis
http://rfs.oxfordjournals.org/content/1/1/41.full
http://rfs.oxfordjournals.org/content/1/1/41.full
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Determining market efficiency with 
autoregressive models

According to the efficient-market hypothesis (refer to the Examining the market with the 
non-parametric runs test recipe), all information about an asset is immediately reflected in 
the price of the asset. This means that previous prices don't influence the current price. The 
following equations specify an autoregressive model (7. 13) and a restricted model (7. 14)  
with all the coefficients set to zero:
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If we believe the market to be efficient, we would expect the unrestricted model to have 
nothing to add over the restricted model, and, therefore, the ratio (7. 15) of the respective 
R-squared coefficients should be close to one.

How to do it...
The script is in the autoregressive_test.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import dautil as dl
import ch7util
import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from IPython.display import HTML

2.	 Fit the models using (7.13) and (7.14) and then calculate the market efficiency using 
(7.15) for our list of stocks:
ohlc = dl.data.OHLC()
efficiencies = []
restricted_r2 = []
unrestricted_r2 = []

for stock in ch7util.STOCKS:
    rets = ch7util.log_rets(ohlc.get(stock)['Adj Close'])
    restricted = sm.OLS(rets, rets.mean() * np.ones_like(rets)).
fit()
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    rets_1 = rets[3:-1]
    rets_2 = rets[2:-2]
    rets_3 = rets[1:-3]
    rets_4 = rets[:-4]
    x = np.vstack((rets_1, rets_2, rets_3, rets_4)).T
    x = sm.add_constant(x)
    y = rets[4:]
    unrestricted = sm.OLS(y, x).fit()
    restricted_r2.append(restricted.rsquared)
    unrestricted_r2.append(unrestricted.rsquared)
    efficiencies.append(1 - restricted.rsquared/unrestricted.
rsquared)

3.	 Plot the market efficiency and R-squared values as follows:
sp = dl.plotting.Subplotter(2, 1, context)
dl.plotting.bar(sp.ax, ch7util.STOCKS, efficiencies)
sp.label()
dl.plotting.plot_text(sp.next_ax(), unrestricted_r2, 
np.array(restricted_r2)/10 ** -16,
                      ch7util.STOCKS, add_scatter=True)
sp.label()
HTML(sp.exit())

Refer to the following screenshot for the end result:
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See also
ff The Wikipedia page about the autoregressive model \ at https://en.wikipedia.

org/wiki/Autoregressive_model (retrieved October 2015)

Creating tables for a stock prices database
Storing stock prices only is in general not very useful. We usually want to store additional 
static information about companies and related derivatives such as stock options and futures. 
Economic theory tells us that looking for cycles and trends in historical price data is more 
or less a waste of time; therefore, creating a database seems be even more pointless. Of 
course you don't have to believe the theory, and anyway creating a stock prices database is 
a fun technical challenge. Also a database is useful for portfolio optimization (see the recipe, 
Optimizing an equal weights 2 asset portfolio).

We will base the design on the star schema pattern covered in Implementing a star schema 
with fact and dimension tables. The fact table will hold the prices, with a date dimension table, 
asset dimension table, and a source dimension table as in the following diagram:

stock_price

id
date_id
asset_id
source_id
open_price
high_price
low_price
close_price
adjusted_close
volume

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

date_dim

asset_dim

source_dim

id
date
day_of_month
day_of_week
month
quarter
year

INTEGER
DATE
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER

id
symbol
name
category
country
sector

INTEGER
VARCHAR
VARCHAR
VARCHAR
VARCHAR
VARCHAR

INTEGER
VARCHAR
VARCHAR

id
name
url

Obviously, the schema will evolve over time with tables, indexes, and columns added or removed 
as needed. We will use the schema in the Populating the stock prices database recipe.

https://en.wikipedia.org/wiki/Autoregressive_model
https://en.wikipedia.org/wiki/Autoregressive_model
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How to do it...
The schema is defined in the database_tables.py file in this book's code bundle:

1.	 The imports are as follows:
from sqlalchemy import Column
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Date
from sqlalchemy import ForeignKey
from sqlalchemy import Integer
from sqlalchemy import String

Base = declarative_base()

2.	 Define the following class for the stock prices fact table:
class StockPrice(Base):
    __tablename__ = 'stock_price'
    id = Column(Integer, primary_key=True)
    date_id = Column(Integer, ForeignKey('date_dim.id'),
                     primary_key=True)
    asset_id = Column(Integer, ForeignKey('asset_dim.id'),
                      primary_key=True)
    source_id = Column(Integer, ForeignKey('source_dim.id'),
                       primary_key=True)
    open_price = Column(Integer)
    high_price = Column(Integer)
    low_price = Column(Integer)
    close_price = Column(Integer)
    adjusted_close = Column(Integer)
    volume = Column(Integer)

3.	 Define the following class for the date dimension table:
class DateDim(Base):
    __tablename__ = 'date_dim'
    id = Column(Integer, primary_key=True)
    date = Column(Date, nullable=False, unique=True)
    day_of_month = Column(Integer, nullable=False)
    day_of_week = Column(Integer, nullable=False)
    month = Column(Integer, nullable=False)
    quarter = Column(Integer, nullable=False)
    year = Column(Integer, nullable=False)
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4.	 Define the following class to hold information about the stocks:
class AssetDim(Base):
    __tablename__ = 'asset_dim'
    id = Column(Integer, primary_key=True)
    symbol = Column(String, nullable=False, unique=True)
    name = Column(String, nullable=False)
    # Could make this a reference to separate table
    category = Column(String, nullable=False)
    country = Column(String, nullable=False)
    # Could make this a reference to separate table
    sector = Column(String, nullable=False)

5.	 Define the following class for the source dimension table (we only need one entry for 
Yahoo Finance):
class SourceDim(Base):
    __tablename__ = 'source_dim'
    id = Column(Integer, primary_key=True)
    name = Column(String, nullable=False)
    url = Column(String)

Populating the stock prices database
In the Creating tables for a stock prices database recipe, we defined a schema for a historical 
stock prices database. In this recipe, we will populate the tables with data from Yahoo Finance 
and plot average volumes for different time frames and business sectors.

Stock market researchers have found several strange phenomena that have to do with 
seasonal effects. Also, there are certain recurring events such as earnings announcements, 
dividend payments, and options expirations. Again, economic theory tells us that any patterns 
we observe are either illusions or already known to all market participants. Whether this is 
true or not is hard to confirm; however, this recipe is great as exercise in data analysis. Also, 
you can use the database to optimize your portfolio as explained in the Optimizing an equal 
weights 2 asset portfolio recipe.

How to do it...
The code is in the populate_database.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import database_tables as tables
import pandas as pd
import os
import dautil as dl
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import ch7util
import sqlite3
import matplotlib.pyplot as plt
import seaborn as sns
from IPython.display import HTML

2.	 Define the following function to populate the date dimension table:
def populate_date_dim(session):
    for d in pd.date_range(start='19000101', end='20250101'):
        adate = tables.DateDim(date=d.date(), day_of_month=d.day,
                               day_of_week=d.dayofweek, month=d.
month,
                               quarter=d.quarter, year=d.year)
        session.add(adate)

    session.commit()

3.	 Define the following function to populate the asset dimension table:
def populate_asset_dim(session):
    asset = tables.AssetDim(symbol='AAPL', name='Apple Inc.',
                            category='Common Stock', 
country='USA',
                            sector='Consumer Goods')
    session.add(asset)

    asset = tables.AssetDim(symbol='INTC', name='Intel 
Corporation',
                            category='Common Stock', 
country='USA',
                            sector='Technology')
    session.add(asset)

    asset = tables.AssetDim(symbol='MSFT', name='Microsoft 
Corporation',
                            category='Common Stock', 
country='USA',
                            sector='Technology')
    session.add(asset)

    asset = tables.AssetDim(symbol='KO', name='The Coca-Cola 
Company',
                            category='Common Stock', 
country='USA',
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                            sector='Consumer Goods')
    session.add(asset)

    asset = tables.AssetDim(symbol='DIS', name='The Walt Disney 
Company',
                            category='Common Stock', 
country='USA',
                            sector='Services')
    session.add(asset)

    asset = tables.AssetDim(symbol='MCD', name='McDonald\'s 
Corp.',
                            category='Common Stock', 
country='USA',
                            sector='Services')
    session.add(asset)

    asset = tables.AssetDim(symbol='NKE', name='NIKE, Inc.',
                            category='Common Stock', 
country='USA',
                            sector='Consumer Goods')
    session.add(asset)

    asset = tables.AssetDim(symbol='IBM',
                            name='International Business Machines 
Corporation',
                            category='Common Stock', 
country='USA',
                            sector='Technology')
    session.add(asset)

    session.commit()

4.	 Define the following function to populate the source dimension table:
def populate_source_dim(session):
    session.add(tables.SourceDim(name='Yahoo Finance',
                                 url='https://finance.yahoo.com'))
    session.commit()

5.	 Define the following function to populate the fact table holding stock prices:
def populate_prices(session):
    symbols = dl.db.map_to_id(session, tables.AssetDim.symbol)
    dates = dl.db.map_to_id(session, tables.DateDim.date)
    source_id = session.query(tables.SourceDim).first().id
    ohlc = dl.data.OHLC()
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    conn = sqlite3.connect(dbname)
    c = conn.cursor()
    insert = '''INSERT INTO stock_price (id, date_id,
        asset_id, source_id, open_price, high_price, low_price,
        close_price, adjusted_close, volume)  VALUES({id}, {date_
id},
        {asset_id}, {source_id}, {open_price}, {high_price},
        {low_price}, {close_price}, {adj_close}, {volume})'''
    logger = dl.log_api.conf_logger(__name__)

    for symbol in ch7util.STOCKS:
        df = ohlc.get(symbol)
        i = 0

        for index, row in df.iterrows():
            date_id = dates[index.date()]
            asset_id = symbols[symbol]
            i += 1
            stmt = insert.format(id=i, date_id=date_id,
                                 asset_id=asset_id,
                                 source_id=source_id,
                                 open_price=dl.data.
centify(row['Open']),
                                 high_price=dl.data.
centify(row['High']),
                                 low_price=dl.data.
centify(row['Low']),
                                 close_price=dl.data.
centify(row['Close']),
                                 adj_close=dl.data.
centify(row['Adj Close']),
                                 volume=int(row['Volume']))
            c.execute(stmt)

            if i % 1000 == 0:
                logger.info("Progress %s %s", symbol, i)

            conn.commit()

        conn.commit()

    c.close()
    conn.close()
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6.	 Define the following function to populate all the tables:
def populate(session):
    if session.query(tables.SourceDim).count() == 0:
        populate_source_dim(session)
        populate_asset_dim(session)
        populate_date_dim(session)
        populate_prices(session)

7.	 Define the following function to plot the average volumes:
def plot_volume(col, ax):
    df = pd.read_sql(sql.format(col=col), conn)
    sns.barplot(x=col, y='AVG(P.Volume/1000)', data=df,
                hue='sector', ax=ax)

    ax.legend(loc='best')

dbname = os.path.join(dl.data.get_data_dir(), 'stock_prices.db')
session = dl.db.create_session(dbname, tables.Base)
populate(session)
sql = '''
    SELECT
        A.sector,
        D.{col},
        AVG(P.Volume/1000)
    FROM stock_price P
    INNER JOIN date_dim D  ON (P.Date_Id = D.Id)
    INNER JOIN asset_dim A ON (P.asset_id = a.Id)
    GROUP BY
        A.sector,
        D.{col}
      '''

8.	 Plot the average volumes with the following code:
conn = sqlite3.connect(dbname)

sp = dl.plotting.Subplotter(2, 2, context)
plot_volume('day_of_week', sp.ax)
sp.ax.set_xticklabels(['Mon', 'Tue', 'Wed', 'Thu', 'Fri'])

plot_volume('month', sp.next_ax())
sp.ax.set_xticklabels(dl.ts.short_months())

plot_volume('day_of_month', sp.next_ax())
plot_volume('quarter', sp.next_ax())
HTML(sp.exit())



Selecting Stocks with Financial Data Analysis

230

Refer to the following screenshot for the end result:

Optimizing an equal weights two-asset 
portfolio

Buying and selling stocks is a bit like shopping. Shopping is something that supermarkets and 
online bookstores know well. These types of business often apply techniques such as basket 
analysis and recommendation engines. If, for example, you are a fan of a writer who writes 
historically inaccurate novels, a recommendation engine will probably recommend another 
novel by the same writer or other historically inaccurate novels.

A recommendation engine for stocks can't work this way. For instance, if you only have  
stocks of oil producers in your portfolio and the oil price moves against you, then the whole 
portfolio will lose value. So, we should try to have stocks from different sectors, industries,  
or geographical regions. We can measure similarity with the correlation of returns.
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Analogous to the Sharpe ratio (refer to the Ranking stocks with the Sharpe ratio and liquidity 
recipe), we want to maximize the average returns of our portfolio and minimize the variance 
of the portfolio returns. These ideas are also present in the Modern Portfolio Theory (MPT), 
the inventor of which was awarded the Nobel Prize. For a two-asset portfolio, we have the 
following equations:
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The weights wA and wB are the portfolio weights and sum up to 1. The weights can be 
negative—as investors can sell short (selling without owning, which incurs borrowing costs) 
a security. We can solve the portfolio optimization problem with linear algebra methods or 
general optimization algorithms. However, for a two-asset portfolio with equal weights and  
a handful of stocks, the brute force approach is good enough.

How to do it...
The following is a breakdown of the portfolio_optimization.ipynb file in this book's 
code bundle:

1.	 The imports are as follows:
import dautil as dl
import ch7util
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

2.	 Define the following function to calculated the expected return (7.16):
def expected_return(stocka, stockb, means):
    return 0.5 * (means[stocka] + means[stockb])

3.	 Define the following function to calculate the variance of the portfolio return (7.17):
def variance_return(stocka, stockb, stds):
    ohlc = dl.data.OHLC()
    dfa = ohlc.get(stocka)
    dfb = ohlc.get(stockb)
    merged = pd.merge(left=dfa, right=dfb,
                      right_index=True, left_index=True,
                      suffixes=('_A', '_B')).dropna()
    retsa = ch7util.log_rets(merged['Adj Close_A'])
    retsb = ch7util.log_rets(merged['Adj Close_B'])



Selecting Stocks with Financial Data Analysis

232

    corr = np.corrcoef(retsa, retsb)[0][1]

    return 0.25 * (stds[stocka] ** 2 + stds[stockb] ** 2 +
                   2 * stds[stocka] * stds[stockb] * corr)

4.	 Define the following function to calculate the ratio of the expected return and variance:
def calc_ratio(stocka, stockb, means, stds, ratios):
    if stocka == stockb:
        return np.nan

    key = stocka + '_' + stockb
    ratio = ratios.get(key, None)

    if ratio:
        return ratio

    expected = expected_return(stocka, stockb, means)
    var = variance_return(stocka, stockb, stds)
    ratio = expected/var
    ratios[key] = ratio

    return ratio

5.	 Compute the average return and standard deviations for each stock:
means = {}
stds = {}

ohlc = dl.data.OHLC()

for stock in ch7util.STOCKS:
    close = ohlc.get(stock)['Adj Close']
    rets = ch7util.log_rets(close)
    means[stock] = rets.mean()
    stds[stock] = rets.std()

6.	 Calculate the ratios in a grid for all the combinations of our stocks:
pairs = dl.collect.grid_list(ch7util.STOCKS)
sorted_pairs = [[sorted(row[i]) for row in pairs]
                for i in range(len(ch7util.STOCKS))]
ratios = {}

grid = [[calc_ratio(row[i][0], row[i][1], means, stds, ratios)
        for row in sorted_pairs] for i in range(len(ch7util.
STOCKS))]
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7.	 Plot the grid in a heatmap as follows:
%matplotlib inline
plt.title('Expected Return/Return Variance for 2 Asset Portfolio')
sns.heatmap(grid, xticklabels=ch7util.STOCKS, yticklabels=ch7util.
STOCKS)

Refer to the following screenshot for the end result:

See also
ff The Wikipedia page about the MPT at https://en.wikipedia.org/wiki/

Modern_portfolio_theory (retrieved October 2015)

https://en.wikipedia.org/wiki/Modern_portfolio_theory
https://en.wikipedia.org/wiki/Modern_portfolio_theory
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8
Text Mining and Social 

Network Analysis

In this chapter, we will cover the following recipes:

ff Creating a categorized corpus

ff Tokenizing news articles in sentences and words

ff Stemming, lemmatizing, filtering, and TF-IDF scores

ff Recognizing named entities

ff Extracting topics with non-negative matrix factorization

ff Implementing a basic terms database

ff Computing social network density

ff Calculating social network closeness centrality

ff Determining the betweenness centrality

ff Estimating the average clustering coefficient

ff Calculating the assortativity coefficient of a graph

ff Getting the clique number of a graph

ff Creating a document graph with cosine similarity

Introduction
Humans have communicated through language for thousands of years. Handwritten texts 
have been around for ages, the Gutenberg press was of course a huge development, but now 
that we have computers, the Internet, and social media, things have definitely spiraled out  
of control.
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This chapter will help you cope with the flood of textual and social media information. The 
main Python libraries we will use are NLTK and NetworkX. You have to really appreciate  
how many features can be found in these libraries. Install NLTK with either pip or conda  
as follows:

$ conda/pip install nltk 

The code was tested with NLTK 3.0.2. If you need to download corpora, follow the instructions 
given at http://www.nltk.org/data.html (retrieved November 2015).

Install NetworkX with either pip or conda, as follows:

$ conda/pip install networkx 

The code was tested with Network 1.9.1.

Creating a categorized corpus
As Pythonistas, we are interested in news about Python programming or related technologies; 
however, if you search for Python articles, you may also get articles about snakes. One 
solution for this issue is to train a classifier, which recognizes relevant articles. This requires  
a training set—a categorized corpus with, for instance, the categories "Python programming" 
and "other".

NLTK has the CategorizedPlaintextCorpusReader class for the construction of a 
categorized corpus. To make things extra exciting, we will get the links for the news articles 
from RSS feeds. I chose feeds from the BBC, but of course you can use any other feeds. The 
BBC feeds are already categorized. I selected the world news and technology news feeds, 
so this gives us two categories. The feeds don't contain the full text of the articles, hence we 
need to do a bit of scraping using Selenium as more thoroughly described in Chapter 5, Web 
Mining, Databases, and Big Data. You may need to post-process the text files because the 
BBC web pages don't contain only the text of the news stories, but also side sections.

Getting ready
Install NLTK following the instructions in the Introduction section of this chapter. Install 
feedparser for the processing of RSS feeds:

$ pip/conda install feedparser

I tested this recipe with feedparser 5.2.1.

http://www.nltk.org/data.html
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How to do it...
1.	 The imports are as follows:

import feedparser as fp
import urllib
from selenium import webdriver
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.common.by import By
import dautil as dl
from nltk.corpus.reader import CategorizedPlaintextCorpusReader
import os

2.	 Create the following variables to help with scraping:
DRIVER = webdriver.PhantomJS()
NAP_SECONDS = 10
LOGGER = dl.log_api.conf_logger('corpus')

3.	 Define the following function to store text content:
def store_txt(url, fname, title):
    try:
        DRIVER.get(url)

        elems = WebDriverWait(DRIVER, NAP_SECONDS).until(
            EC.presence_of_all_elements_located((By.XPATH, '//p'))
        )

        with open(fname, 'w') as txt_file:
            txt_file.write(title + '\n\n')
            lines = [e.text for e in elems]
            txt_file.write(' \n'.join(lines))
    except Exception:
        LOGGER.error("Error processing HTML", exc_info=True)

4.	 Define the following function to retrieve the stories:
def fetch_news(dir):
    base = 'http://newsrss.bbc.co.uk/rss/newsonline_uk_edition/{}/
rss.xml'

    for category in ['world', 'technology']:
        rss = fp.parse(base.format(category))
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        for i, entry in enumerate(rss.entries):
            fname = '{0}_bbc_{1}.txt'.format(i, category)
            fname = os.path.join(dir, fname)

            if not dl.conf.file_exists(fname):
                store_txt(entry.link, fname, entry.title)

5.	 Call the functions with the following code:
if __name__ == "__main__":
    dir = os.path.join(dl.data.get_data_dir(), 'bbc_news_corpus')

    if not os.path.exists(dir):
        os.mkdir(dir)

    fetch_news(dir)
    reader = CategorizedPlaintextCorpusReader(dir, r'.*bbc.*\.
txt',
                                              cat_pattern=r'.*bbc_
(\w+)\.txt')
    printer = dl.log_api.Printer(nelems=3)
    printer.print('Categories', reader.categories())
    printer.print('World fileids', reader.
fileids(categories=['world']))
    printer.print('Technology fileids',
                  reader.fileids(categories=['technology']))

Refer to the following screenshot for the end result:

The code is in the corpus.py file in this book's code bundle.
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See also
ff The documentation for CategorizedPlaintextCorpusReader at http://

www.nltk.org/api/nltk.corpus.reader.html#nltk.corpus.reader.
CategorizedPlaintextCorpusReader (retrieved October 2015)

Tokenizing news articles in sentences  
and words

The corpora that are part of the NLTK distribution are already tokenized, so we can easily  
get lists of words and sentences. For our own corpora, we should apply tokenization too.  
This recipe demonstrates how to implement tokenization with NLTK. The text file we will 
use is in this book's code bundle. This particular text is in English, but NLTK supports other 
languages too.

Getting ready
Install NLTK, following the instructions in the Introduction section of this chapter.

How to do it...
The program is in the tokenizing.py file in this book's code bundle:

1.	 The imports are as follows:
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
import dautil as dl

2.	 The following code demonstrates tokenization:
fname = '46_bbc_world.txt'
printer = dl.log_api.Printer(nelems=3)

with open(fname, "r", encoding="utf-8") as txt_file:
    txt = txt_file.read()
    printer.print('Sentences', sent_tokenize(txt))
    printer.print('Words', word_tokenize(txt))

http://www.nltk.org/api/nltk.corpus.reader.html#nltk.corpus.reader.CategorizedPlaintextCorpusReader
http://www.nltk.org/api/nltk.corpus.reader.html#nltk.corpus.reader.CategorizedPlaintextCorpusReader
http://www.nltk.org/api/nltk.corpus.reader.html#nltk.corpus.reader.CategorizedPlaintextCorpusReader


Text Mining and Social Network Analysis

240

Refer to the following screenshot for the end result:

See also
ff The relevant documentation is at http://www.nltk.org/api/nltk.tokenize.

html?highlight=sent_tokenize#nltk.tokenize.sent_tokenize 
(retrieved October 2015).

Stemming, lemmatizing, filtering,  
and TF-IDF scores

 The bag-of-words model represents a corpus literally as a bag of words, not taking into 
account the position of the words—only their count. Stop words are common words such  
as "a", "is," and "the", which don't add information value.

TF-IDF scores can be computed for single words (unigrams) or combinations of multiple 
consecutive words (n-grams). TF-IDF is roughly the ratio of term frequency and inverse 
document frequency. I say "roughly" because we usually take the logarithm of the ratio 
or apply a weighting scheme. Term frequency is the frequency of a word or n-gram in a 
document. The inverse document frequency is the inverse of the number of documents in 
which the word or n-gram occurs. We can use TF-IDF scores for clustering or as a feature of 
classification. In the Extracting topics with non-negative matrix factorization recipe, we will 
use the scores to discover topics.

http://www.nltk.org/api/nltk.tokenize.html?highlight=sent_tokenize#nltk.tokenize.sent_tokenize
http://www.nltk.org/api/nltk.tokenize.html?highlight=sent_tokenize#nltk.tokenize.sent_tokenize
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NLTK represents the scores by a sparse matrix with one row for each document in the corpus 
and one column for each word or n-gram. Even though the matrix is sparse, we should try to 
filter words as much as possible depending on the type of problems we are trying to solve. The 
filtering code is in ch8util.py and implements the following operations:

ff Converts all words to lower case. In English, sentences start with upper case and in 
the bag-of-words model, we don't care about the word position. Obviously, if we want 
to detect named entities (as in the Recognizing named entities recipe), case matters.

ff Ignores stop words, as those have no semantic value.

ff Ignores words consisting of only one character, as those are either stop words or 
punctuation pretending to be words.

ff Ignores words that only occur once, as those are unlikely to be important.

ff Only allows words containing letters, so ignores a word like "7th" as it contains a digit.

We will also filter with lemmatization. Lemmatization is similar to stemming, which I will 
also demonstrate. The idea behind both procedures is that words have common roots, for 
instance, the words "analysis," "analyst," and "analysts" have a common root. In general, 
stemming cuts characters, so the result doesn't have to be a valid word. Lemmatization,  
in contrast, always produces valid words and performs dictionary look-ups.

The code for the ch8util.py file in this book's code bundle is as follows:

from collections import Counter
from nltk.corpus import brown
from joblib import Memory

memory = Memory(cachedir='.')

def only_letters(word):
    for c in word:
        if not c.isalpha():
            return False

    return True

@memory.cache
def filter(fid, lemmatizer, sw):
    words = [lemmatizer.lemmatize(w.lower()) for w in brown.words(fid)
             if len(w) > 1 and w.lower() not in sw]
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    # Ignore words which only occur once
    counts = Counter(words)
    rare = set([w for w, c in counts.items() if c == 1])

    filtered_words = [w for w in words if w not in rare]

    return [w for w in filtered_words if only_letters(w)]

I decided to limit the analysis to unigrams, but it's quite easy to extend the analysis to bigrams 
or trigrams. The scikit-learn TfidfVectorizer class that we will use lets us specify a 
ngram_range field, so we can consider unigrams and n-grams at the same time. We will 
pickle the results of this recipe to be reused by other recipes.

Getting ready
Install NLTK by following the instructions in the Introduction section.

How to do it...
The script is in the stemming_lemma.py file in this book's code bundle:

1.	 The imports are as follows:
from nltk.corpus import brown
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from nltk.stem import WordNetLemmatizer
import ch8util
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
import pandas as pd
import pickle
import dautil as dl

2.	 Demonstrate stemming and lemmatizing as follows:
stemmer = PorterStemmer()
lemmatizer = WordNetLemmatizer()

print('stem(analyses)', stemmer.stem('analyses'))
print('lemmatize(analyses)', lemmatizer.lemmatize('analyses'))

3.	 Filter the words in the NLTK Brown corpus:
sw = set(stopwords.words())
texts = []
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fids = brown.fileids(categories='news')

for fid in fids:
    texts.append(" ".join(ch8util.filter(fid, lemmatizer, sw)))

4.	 Calculate TF-IDF scores as follows:
vectorizer = TfidfVectorizer()
matrix = vectorizer.fit_transform(texts)

with open('tfidf.pkl', 'wb') as pkl:
    pickle.dump(matrix, pkl)

sums = np.array(matrix.sum(axis=0)).ravel()

ranks = [(word, val) for word, val in
         zip(vectorizer.get_feature_names(), sums)]

df = pd.DataFrame(ranks, columns=["term", "tfidf"])
df.to_pickle('tfidf_df.pkl')
df = df.sort(['tfidf'])
dl.options.set_pd_options()
print(df)

Refer to the following screenshot for the end result:

How it works
As you can see, stemming doesn't return a valid word. It is faster than lemmatization; however, 
if you want to reuse the results, it makes sense to prefer lemmatization. The TF-IDF scores 
are sorted in ascending order in the final pandas DataFrame object. A higher TF-IDF score 
indicates a more important word.



Text Mining and Social Network Analysis

244

See also
ff The Wikipedia page about the bag-of-words model at https://en.wikipedia.

org/wiki/Bag-of-words_model (retrieved October 2015)

ff The Wikipedia page about lemmatization at https://en.wikipedia.org/wiki/
Lemmatisation (retrieved October 2015)

ff The Wikipedia page about the TF-IDF at https://en.wikipedia.org/wiki/
Tf%E2%80%93idf (retrieved October 2015)

ff The Wikipedia page about stop words at https://en.wikipedia.org/wiki/
Stop_words (retrieved October 2015)

ff The documentation for the TfidfVectorizer class at http://scikit-learn.
org/stable/modules/generated/sklearn.feature_extraction.text.
TfidfVectorizer.html (retrieved October 2015)

ff The documentation for the WordNetLemmatizer class at http://www.nltk.
org/api/nltk.stem.html#nltk.stem.wordnet.WordNetLemmatizer 
(retrieved November 2015)

Recognizing named entities
Named-entity recognition (NER) tries to detect names of persons, organizations, locations, 
and other names in texts. Some NER systems are almost as good as humans, but it is not an 
easy task. Named entities usually start with upper case, such as Ivan. We should, therefore, 
not change the case of words when applying NER.

NLTK has support for the Stanford NER API. This is a Java API, so you need to have Java on 
your system. I tested the code with Java 1.8.0_65. The code in this recipe downloads the most 
recent Stanford NER archive (stanford-ner-2015-04-20.zip/3.5.2) as of October 
2015. If you want another version, take a look at http://nlp.stanford.edu/software/
CRF-NER.shtml (retrieved October 2015).

Getting ready
Install NLTK by following the instructions in the Introduction section. You may also need to 
install Java.

https://en.wikipedia.org/wiki/Bag-of-words_model
https://en.wikipedia.org/wiki/Bag-of-words_model
https://en.wikipedia.org/wiki/Lemmatisation
https://en.wikipedia.org/wiki/Lemmatisation
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
https://en.wikipedia.org/wiki/Stop_words
https://en.wikipedia.org/wiki/Stop_words
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html
http://www.nltk.org/api/nltk.stem.html#nltk.stem.wordnet.WordNetLemmatizer
http://www.nltk.org/api/nltk.stem.html#nltk.stem.wordnet.WordNetLemmatizer
http://nlp.stanford.edu/software/CRF-NER.shtml
http://nlp.stanford.edu/software/CRF-NER.shtml
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How to do it...
The script is in the named_entity.py file in this book's code bundle:

1.	 The imports are as follows:
from nltk.tag.stanford import NERTagger
import dautil as dl
import os
from zipfile import ZipFile
from nltk.corpus import brown

2.	 Define the following function to download the NER archive:
def download_ner():
    url = 'http://nlp.stanford.edu/software/stanford-
ner-2015-04-20.zip'
    dir = os.path.join(dl.data.get_data_dir(), 'ner')

    if not os.path.exists(dir):
        os.mkdir(dir)

    fname = 'stanford-ner-2015-04-20.zip'
    out = os.path.join(dir, fname)

    if not dl.conf.file_exists(out):
        dl.data.download(url, out)

        with ZipFile(out) as nerzip:
            nerzip.extractall(path=dir)

    return os.path.join(dir, fname.replace('.zip', ''))

3.	 Apply NER to one of the files in the Brown corpus:
dir = download_ner()
st = NERTagger(os.path.join(dir, 'classifiers',
                            'english.all.3class.distsim.crf.ser.
gz'),
               os.path.join(dir, 'stanford-ner.jar'))
fid = brown.fileids(categories='news')[0]
printer = dl.log_api.Printer(nelems=9)

tagged = [pair for pair in dl.collect.flatten(st.tag(brown.
words(fid)))
          if pair[1] != 'O']
printer.print(tagged)
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Refer to the following screenshot for the end result:

How it works
We created a NerTagger object by specifying a pre-trained classifier and the NER JAR (Java 
archive). The classifier tagged words in our corpus as organization, location, person, or other. 
The classification is case sensitive, which means that if you lowercase all the words, you will 
get different results.

See also
ff The Wikipedia page about NER at https://en.wikipedia.org/wiki/Named-

entity_recognition (retrieved October 2015)

Extracting topics with non-negative matrix 
factorization

Topics in natural language processing don't exactly match the dictionary definition and 
correspond to more of a nebulous statistical concept. We speak of topic models and 
probability distributions of words linked to topics, as we know them. When we read a text, we 
expect certain words that appear in the title or the body of the text to capture the semantic 
context of the document. An article about Python programming will have words like "class" and 
"function", while a story about snakes will have words like "eggs" and "afraid." Texts usually 
have multiple topics; for instance, this recipe is about topic models and non-negative matrix 
factorization, which we will discuss shortly. We can, therefore, define an additive model for 
topics by assigning different weights to topics.

One of the topic modeling algorithms is non-negative matrix factorization (NMF). This 
algorithm factorizes a matrix into a product of two matrices in such a way that the two matrices 
have no negative values. Usually, we are only able to numerically approximate the solution of 
the factorization and the time complexity is polynomial. The scikit-learn NMF class implements 
this algorithm. NMF can also be applied to document clustering and signal processing.

https://en.wikipedia.org/wiki/Named-entity_recognition
https://en.wikipedia.org/wiki/Named-entity_recognition
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How to do it...
We will reuse the results from the Stemming, lemmatizing, filtering, and TF-IDF scores recipe:

1.	 The imports are as follows:
from sklearn.decomposition import NMF
import ch8util

2.	 Load the TF-IDF matrix and words from a pickle:
terms = ch8util.load_terms()
tfidf = ch8util.load_tfidf()

3.	 Visualize topics as lists of high-ranking words:
nmf = NMF(n_components=44, random_state=51).fit(tfidf)

for topic_idx, topic in enumerate(nmf.components_):
    label = '{}: '.format(topic_idx)
    print(label, " ".join([terms[i] for i in topic.argsort()[:-9:-
1]]))

Refer to the following screenshot for the end result:

The code is in the topic_extraction.py file in this book's code bundle.
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How it works
The NMF class has a components_ attribute, which holds the non-negative components of 
the data. We selected the words corresponding to the highest values in the components_ 
attribute. As you can see, the topics are varied, although a bit outdated.

See also
ff The  documentation for the NMF class at http://scikit-learn.org/stable/

modules/generated/sklearn.decomposition.NMF.html (retrieved October 
2015)

ff The Wikipedia page about topic models at https://en.wikipedia.org/wiki/
Topic_model (retrieved October 2015)

ff The Wikipedia  page about NMF at https://en.wikipedia.org/wiki/Non-
negative_matrix_factorization (retrieved October 2015)

Implementing a basic terms database
As you know, natural language processing has many applications:

ff Full text search as implemented by commercial and open source search engines

ff Clustering of documents

ff Classification, for example to determine the type of text or the sentiment in the 
context of a product review

To perform these tasks, we need to calculate features such as TF-IDF scores (refer to 
Stemming, lemmatizing, filtering, and TF-IDF scores). Especially, with large datasets, it 
makes sense to store the features for easy processing. Search engines use inverted indices, 
which map words to web pages. This is similar to the association table pattern (refer to 
Implementing association tables).

We will implement the association table pattern with three tables. One table contains the 
words, another will implement the association table pattern with three tables. One table 
contains the words, another table holds the information about the documents, and the  
third table links the other two tables as shown in the following schema:

texts

terms

id
word

INTEGER
VARCHAR

id
file

INTEGER
VARCHARtext_terms

text_id
term_id
tf_idf

INTEGER
INTEGER
FLOAT

http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.NMF.html
https://en.wikipedia.org/wiki/Topic_model
https://en.wikipedia.org/wiki/Topic_model
https://en.wikipedia.org/wiki/Non-negative_matrix_factorization
https://en.wikipedia.org/wiki/Non-negative_matrix_factorization
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How to do it...
The program is in the terms_database.py file in this book's code bundle:

1.	 The imports are as follows:
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column
from sqlalchemy import ForeignKey
from sqlalchemy import Float
from sqlalchemy import Integer
from sqlalchemy import String
from sqlalchemy.orm import backref
from sqlalchemy.orm import relationship
import os
import dautil as dl
from nltk.corpus import brown
from sqlalchemy import func
import ch8util

Base = declarative_base()

2.	 Define the following class for the text documents:
class Text(Base):
    __tablename__ = 'texts'
    id = Column(Integer, primary_key=True)
    file = Column(String, nullable=False, unique=True)
    terms = relationship('Term', secondary='text_terms')

    def __repr__(self):
        return "Id=%d file=%s" % (self.id, self.file)

3.	 Define the following class for the words in the articles:
class Term(Base):
    __tablename__ = 'terms'
    id = Column(Integer, primary_key=True)
    word = Column(String, nullable=False, unique=True)

    def __repr__(self):
        return "Id=%d word=%s" % (self.id, self.word)
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4.	 Define the following class for the association of documents and words:
class TextTerm(Base):
    __tablename__ = 'text_terms'
    text_id = Column(Integer, ForeignKey('texts.id'), primary_
key=True)
    term_id = Column(Integer, ForeignKey('terms.id'), primary_
key=True)
    tf_idf = Column(Float)
    text = relationship('Text', backref=backref('term_assoc'))
    term = relationship('Term', backref=backref('text_assoc'))

    def __repr__(self):
        return "text_id=%s term_id=%s" % (self.text_id, self.term_
id)

5.	 Define the following function to insert entries in the texts table:
def populate_texts(session):
    if dl.db.not_empty(session, Text):
        # Cowardly refusing to continue
        return

    fids = brown.fileids(categories='news')

    for fid in fids:
        session.add(Text(file=fid))

    session.commit()

6.	 Define the following function to insert entries in the terms table:
def populate_terms(session):
    if dl.db.not_empty(session, Term):
        # Cowardly refusing to continue
        return

    terms = ch8util.load_terms()

    for term in terms:
        session.add(Term(word=term))

    session.commit()

7.	 Define the following function to insert entries in the association table:
def populate_text_terms(session):
    if dl.db.not_empty(session, TextTerm):
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        # Cowardly refusing to continue
        return

    text_ids = dl.collect.flatten(session.query(Text.id).all())
    term_ids = dl.collect.flatten(session.query(Term.id).all())

    tfidf = ch8util.load_tfidf()
    logger = dl.log_api.conf_logger(__name__)

    for text_id, row, in zip(text_ids, tfidf):
        logger.info('Processing {}'.format(text_id))
        arr = row.toarray()[0]
        session.get_bind().execute(
            TextTerm.__table__.insert(),
            [{'text_id': text_id, 'term_id': term_id,
              'tf_idf': arr[i]}
             for i, term_id in enumerate(term_ids)
             if arr[i] > 0]
        )

    session.commit()

8.	 Define the following function to perform a search with keywords:
def search(session, keywords):
    terms = keywords.split()
    fsum = func.sum(TextTerm.tf_idf)

    return session.query(TextTerm.text_id, fsum).\
        join(Term, TextTerm).\
        filter(Term.word.in_(terms)).\
        group_by(TextTerm.text_id).\
        order_by(fsum.desc()).all()

9.	 Call the functions we defined with the following code:
if __name__ == "__main__":
    dbname = os.path.join(dl.data.get_data_dir(), 'news_terms.db')
    session = dl.db.create_session(dbname, Base)
    populate_texts(session)
    populate_terms(session)
    populate_text_terms(session)
    printer = dl.log_api.Printer()
    printer.print('id, tf_idf', search(session, 'baseball game'))
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We performed a search for "baseball game." Refer to the following screenshot for the end 
result (file IDs and TF-IDF sums):

How it works
We stored TF-IDF scores using the association table database pattern. As an example of using 
the database, we queried for "baseball game." The query looked up the IDs of both words 
in the terms table and then summed the related TF-IDF scores in the association table. The 
sums serve as a relevancy score. Then, we presented the corresponding file IDs with relevancy 
scores in descending order. If you are showing the result to end users, you will have to do at 
least one more query to replace the file IDs with filenames. As it happens, the files we are 
analyzing are named ca01 to ca44, so the query is not strictly necessary.

Because I had the TF-IDF scores already, I found it convenient to store them directly. However, 
you can also decide to store the term frequency and inverse document frequency and derive 
the TF-IDF scores from those. You only need to determine the term frequency for each new 
document and the words in the document. All the inverse document frequencies need to 
be updated when documents are added or removed. However, establishing a link via the 
association table is already enough to calculate the term frequency, inverse document 
frequency, and TF-IDF scores.

See also
ff The Wikipedia page about search engine indexing at https://en.wikipedia.

org/wiki/Search_engine_indexing (retrieved October 2015)

Computing social network density
Humans are social animals and, therefore, social connections are very important. We can 
view these connections and the persons involved as a network. We represent networks or a 
subset as a graph. A graph consists of nodes or points connected by edges or lines. Graphs 
can be directed or undirected—the lines can be arrows.

https://en.wikipedia.org/wiki/Search_engine_indexing
https://en.wikipedia.org/wiki/Search_engine_indexing
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We will use the Facebook SPAN data, which we also used in the Visualizing network graphs 
with hive plots recipe. Facebook started out small in 2004, but it has more than a billion 
users as of 2015. The data doesn't include all the users, but it is still enough for a  
decent analysis. The following equations describe the density of undirected (8.1) and  
directed (8.2) graphs:
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In these equations, n is the number of nodes and m is the number of edges.

Getting ready
Install NetworkX with the instructions from the Introduction section.

How to do it...
The code is in the net_density.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import networkx as nx
import dautil as dl

2.	 Create a NetworkX graph as follows:
fb_file = dl.data.SPANFB().load()
G = nx.read_edgelist(fb_file,
                     create_using=nx.Graph(),
                     nodetype=int)

3.	 Call the density() function as follows:
print('Density', nx.density(G))

We get the following density:

Density 0.010819963503439287
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See also
ff The density() function documented at https://networkx.github.io/

documentation/latest/reference/generated/networkx.classes.
function.density.html (retrieved October 2015)

ff The Wikipedia page about graphs at https://en.wikipedia.org/wiki/
Graph_%28abstract_data_type%29 (retrieved October 2015)

Calculating social network closeness 
centrality

In a social network such as the Facebook SPAN data, we will have influential people. In graph 
terminology, these are the influential nodes. Centrality finds features of important nodes. 
Closeness centrality uses shortest paths between nodes as a feature, as shown in the 
following equation:
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In (8.3), d(u, v) is the shortest path between u, v, and n is the number of nodes. An influential 
node is close to other nodes and, therefore, the sum of the shortest paths is low. We can 
compute closeness centrality for each node separately, and for a large graph, this can be a 
lengthy calculation. NetworkX allows us to specify which node we are interested in, so we will 
calculate closeness centrality just for a few nodes.

Getting ready
Install NetworkX with the instructions from the Introduction section.

How to do it...
Have a look at the close_centrality.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import networkx as nx
import dautil as dl

https://networkx.github.io/documentation/latest/reference/generated/networkx.classes.function.density.html
https://networkx.github.io/documentation/latest/reference/generated/networkx.classes.function.density.html
https://networkx.github.io/documentation/latest/reference/generated/networkx.classes.function.density.html
https://en.wikipedia.org/wiki/Graph_%28abstract_data_type%29
https://en.wikipedia.org/wiki/Graph_%28abstract_data_type%29
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2.	 Create a NetworkX graph from the Facebook SPAN data as follows:
fb_file = dl.data.SPANFB().load()
G = nx.read_edgelist(fb_file,
                     create_using=nx.Graph(),
                     nodetype=int)

3.	 Calculate the closeness centrality for node 1 and node 4037:
print('Closeness Centrality Node 1',
      nx.closeness_centrality(G, 1))
print('Closeness Centrality Node 4037',
      nx.closeness_centrality(G, 4037))

We get the following result for the Facebook SPAN data:

Closeness Centrality Node 1 0.2613761408505405

Closeness Centrality Node 4037 0.18400546821599453

See also
ff The Wikipedia page about closeness centrality at https://en.wikipedia.org/

wiki/Centrality#Closeness_centrality (retrieved October 2015)

Determining the betweenness centrality
Betweenness centrality is a type of centrality similar to closeness centrality (refer to the 
Calculating social network closeness centrality recipe). This metric is given by the following 
equation:
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It is the total of the fraction of all possible pairs of shortest paths that go through a node.

Getting ready
Install NetworkX with instructions from the Introduction section.

https://en.wikipedia.org/wiki/Centrality#Closeness_centrality
https://en.wikipedia.org/wiki/Centrality#Closeness_centrality
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How to do it...
The script is in the between_centrality.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import networkx as nx
import dautil as dl
import pandas as pd

2.	 Load the Facebook SPAN data into a NetworkX graph:
fb_file = dl.data.SPANFB().load()
G = nx.read_edgelist(fb_file,
                     create_using=nx.Graph(),
                     nodetype=int)

3.	 Calculate the betweenness centrality with k = 256 (number of nodes to use) and 
store the result in a pandas DataFrame object:
key_values = nx.betweenness_centrality(G, k=256)
df = pd.DataFrame.from_dict(key_values, orient='index')

dl.options.set_pd_options()
print('Betweenness Centrality', df)

Refer to the following screenshot for the end result:

See also
ff The Wikipedia page about betweenness centrality at https://en.wikipedia.

org/wiki/Betweenness_centrality (retrieved October 2015

ff The documentation for the betweenness_centrality() function at https://
networkx.github.io/documentation/latest/reference/generated/
networkx.algorithms.centrality.betweenness_centrality.html 
(retrieved October 2015)

https://en.wikipedia.org/wiki/Betweenness_centrality
https://en.wikipedia.org/wiki/Betweenness_centrality
https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.centrality.betweenness_centrality.html
https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.centrality.betweenness_centrality.html
https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.centrality.betweenness_centrality.html
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Estimating the average clustering 
coefficient

From kindergarten onward, we have friends, close friends, best friends forever, social media 
friends, and other friends. A social network graph should, therefore, have clumps, unlike what 
you would observe at a high school party. The question that naturally arises is what would 
happen if we just invite a group of random strangers to a party or recreate this setup online? 
We would expect the probability of strangers connecting to be lower than for friends. In graph 
theory, this probability is measured by the clustering coefficient.

The average clustering coefficient is a local (single node) version of the clustering 
coefficient. The definition of this metric considers triangles formed by nodes. With three 
nodes, we can form one triangle, for instance, the three musketeers. If we add D'Artagnan 
to the mix, more triangles are possible, but not all the triangles have to be realized. It could 
happen that D'Artagnan gets in a fight with all three of the musketeers. In (8.5), we define a 
clustering coefficient as the ratio of realized and possible triangles and average clustering 
coefficient (8.6):
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Getting ready
Install NetworkX with the instructions from the Introduction section.

How to do it...
The script is in the avg_clustering.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import networkx as nx
import dautil as dl

2.	 Load the Facebook SPAN data into a NetworkX graph:
fb_file = dl.data.SPANFB().load()
G = nx.read_edgelist(fb_file,
                     create_using=nx.Graph(),
                     nodetype=int)
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3.	 Calculate the average clustering coefficient as follows:
print('Average Clustering',
      nx.average_clustering(G))

We get the following result for the Facebook SPAN data:

Average Clustering 0.6055467186200871

See also
ff The Wikipedia page about the clustering coefficient at https://en.wikipedia.

org/wiki/Clustering_coefficient (retrieved October 2015)

ff The documentation for the average_clustering() function at https://
networkx.github.io/documentation/latest/reference/generated/
networkx.algorithms.approximation.clustering_coefficient.
average_clustering.html (retrieved October 2015). 

Calculating the assortativity coefficient  
of a graph

In graph theory, similarity is measured by the degree distribution. Degree is the number of 
connections a node has to other nodes. In a directed graph, we have incoming and outgoing 
connections and corresponding indegree and outdegree. Friends tend to have something in 
common. In graph theory, this tendency is measured by the assortativity coefficient. This 
coefficient is the Pearson correlation coefficient between a pair of nodes, as given in the 
following equation:
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qk (distribution of the remaining degree) is the number of connections leaving node k. ejk is 
the joint probability distribution of the remaining degrees of the node pair.

Getting ready
Install NetworkX with the instructions from the Introduction section.

https://en.wikipedia.org/wiki/Clustering_coefficient
https://en.wikipedia.org/wiki/Clustering_coefficient
https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.approximation.clustering_coefficient.average_clustering.html
https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.approximation.clustering_coefficient.average_clustering.html
https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.approximation.clustering_coefficient.average_clustering.html
https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.approximation.clustering_coefficient.average_clustering.html
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How to do it...
The code is in the assortativity.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import networkx as nx
import dautil as dl

2.	 Load the Facebook SPAN data into a NetworkX graph:
fb_file = dl.data.SPANFB().load()
G = nx.read_edgelist(fb_file,
                     create_using=nx.Graph(),
                     nodetype=int)

3.	 Calculate the assortativity coefficient as follows:
print('Degree Assortativity Coefficient',
      nx.degree_assortativity_coefficient(G))

We get the following result for the Facebook SPAN data:

Degree Assortativity Coefficient 0.0635772291856

See also
ff The Wikipedia page about degree distribution at https://en.wikipedia.org/

wiki/Degree_distribution (retrieved October 2015)

ff The Wikipedia page about assortativity at https://en.wikipedia.org/wiki/
Assortativity (retrieved October 2015)

ff The documentation for the degree_assortativity_coefficient() 
function at https://networkx.github.io/documentation/latest/
reference/generated/networkx.algorithms.assortativity.degree_
assortativity_coefficient.html (retrieved October 2015)

Getting the clique number of a graph
A complete graph is a graph in which every pair of nodes is connected by a unique 
connection. A clique is a subgraph that is complete. This is equivalent to the general concept 
of cliques in which every person knows all the other people. The maximum clique is the clique 
with the most nodes. The clique number is the number of nodes in the maximum clique. 
Unfortunately finding the clique number takes a long time, so we will not use the complete 
Facebook SPAN data.

https://en.wikipedia.org/wiki/Degree_distribution
https://en.wikipedia.org/wiki/Degree_distribution
https://en.wikipedia.org/wiki/Assortativity
https://en.wikipedia.org/wiki/Assortativity
https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.assortativity.degree_assortativity_coefficient.html
https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.assortativity.degree_assortativity_coefficient.html
https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.assortativity.degree_assortativity_coefficient.html
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Getting ready
Install NetworkX with the instructions from the Introduction section.

How to do it...
The code is in the clique_number.py file in this book's code bundle:

1.	 The imports are as follows:
import networkx as nx
import dautil as dl

2.	 Load the Facebook SPAN data into a NetworkX graph:
fb_file = dl.data.SPANFB().load()
G = nx.read_edgelist(fb_file,
                     create_using=nx.Graph(),
                     nodetype=int)

3.	 Determine the clique number for a subgraph:
print('Graph Clique Number',
      nx.graph_clique_number(G.subgraph(list(range(2048)))))

We get the following result for the partial Facebook SPAN data:

Graph Clique Number 38

See also
ff The Wikipedia page about complete graphs at https://en.wikipedia.org/

wiki/Complete_graph (retrieved October 2015)

ff The Wikipedia page about cliques at https://en.wikipedia.org/wiki/
Clique_%28graph_theory%29 (retrieved October 2015)

ff The documentation for the graph_clique_number() function at https://
networkx.github.io/documentation/latest/reference/generated/
networkx.algorithms.clique.graph_clique_number.html (retrieved 
October 2015)

https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Complete_graph
https://en.wikipedia.org/wiki/Clique_%28graph_theory%29
https://en.wikipedia.org/wiki/Clique_%28graph_theory%29
https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.clique.graph_clique_number.html
https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.clique.graph_clique_number.html
https://networkx.github.io/documentation/latest/reference/generated/networkx.algorithms.clique.graph_clique_number.html
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Creating a document graph with cosine 
similarity

The Internet is a large web of documents linked to each other. We can view it as a document 
graph in which each node corresponds to a document. You will expect documents to link to 
similar documents; however, web pages sometimes link to other unrelated web pages. This 
can be by mistake or on purpose, for instance in the context of advertising or attempts to 
improve search engine rankings. A more trustworthy source such as Wikipedia will probably 
yield a better graph. However, some Wikipedia pages are very basic stubs, so we may be 
missing out on quality links.

The cosine similarity is a common distance metric to measure the similarity of two 
documents. For this metric, we need to compute the inner product of two feature vectors. The 
cosine similarity of vectors corresponds to the cosine of the angle between vectors, hence the 
name. The cosine similarity is given by the following equation:

( ) ( )8.8 ,
Txyk x y

x y
=

The feature vectors in this recipe are the TF-IDF scores, corresponding to a document. The 
cosine similarity of a document with itself is equal to 1 (zero angle); therefore for documents 
to be similar, the cosine similarity should be as close to 1 as possible.

We will perform the following steps to create a document graph of the news articles in the 
Brown corpus:

1.	 Calculate cosine similarities using the TF-IDF scores that we stored in a pickle from 
the code of the Stemming, lemmatizing, filtering, and TF-IDF scores recipe. The result 
is similar to a correlation matrix.

2.	 For each document, add a connection in the graph to each document, which is 
similar enough. I used the 90th percentile of similarities as threshold; however,  
you can use another value if you prefer.

3.	 For each document, select the top three words using the TF-IDF scores. I used the 
words to annotate the document nodes.

4.	 Calculate graph metrics with NetworkX, as discussed in this chapter.
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How to do it...
The code to create the document graph with cosine similarity is in the cos_similarity.
ipynb file in this book's code bundle:

1.	 The imports are as follows:
from sklearn.metrics.pairwise import cosine_similarity
import networkx as nx
import matplotlib.pyplot as plt
import numpy as np
import dautil as dl
import ch8util

2.	 Define the following function to add nodes to the NetworkX graph annotated with the 
top three most important words per document:
def add_nodes(G, nodes, start, terms):
    for n in nodes:
        words = top_3_words(tfidf, n, terms)
        G.add_node(n, words='{0}: {1}'.
                   format(n, " ".join(words.tolist())))
        G.add_edge(start, n)

3.	 Define the following function to find the top three words for a document:
def top_3_words(tfidf, row, terms):
    indices = np.argsort(tfidf[row].toarray().ravel())[-3:]

    return terms[indices]

4.	 Load the necessary data, calculate cosine similarities, and create a NetworkX graph:
tfidf = ch8util.load_tfidf()
terms = ch8util.load_terms()

sims = cosine_similarity(tfidf, tfidf)
G = nx.Graph()

5.	 Iterate through the cosine similarities and add nodes to the graph:
for i, row in enumerate(sims):
    over_limit = np.where(row > np.percentile(row, 90))[0]
    nodes = set(over_limit.tolist())
    nodes.remove(i)
    add_nodes(G, nodes, i, terms)
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6.	 Plot the graph and print some metrics using NetworkX:
labels = nx.get_node_attributes(G, 'words')
nx.draw_networkx(G, pos=nx.spring_layout(G), labels=labels)
plt.axis('off')
plt.title('Graph of News Articles in the Brown Corpus')
print('Density', nx.density(G))
print('Average Clustering',
      nx.average_clustering(G))
print('Degree Assortativity Coefficient',
      nx.degree_assortativity_coefficient(G))
print('Graph Clique Number', nx.graph_clique_number(G))

Refer to the following screenshot for the end result:
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See also
ff The Computing social network density recipe

ff The Estimating average clustering coefficient recipe

ff The Calculating the assortativity coefficient of a graph recipe

ff The Getting the clique number of a graph recipe

ff The Wikipedia page about the cosine similarity at https://en.wikipedia.org/
wiki/Cosine_similarity (retrieved October 2015)

ff The documentation about the cosine_similarity() function at http://
scikit-learn.org/stable/modules/metrics.html#cosine-similarity 
(retrieved October 2015)

https://en.wikipedia.org/wiki/Cosine_similarity
https://en.wikipedia.org/wiki/Cosine_similarity
http://scikit-learn.org/stable/modules/metrics.html#cosine-similarity
http://scikit-learn.org/stable/modules/metrics.html#cosine-similarity
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9
Ensemble Learning 
and Dimensionality 

Reduction

In this chapter, we will cover the following recipes:

ff Recursively eliminating features

ff Applying principal component analysis for dimensionality reduction

ff Applying linear discriminant analysis for dimensionality reduction

ff Stacking and majority voting for multiple models

ff Learning with random forests

ff Fitting noisy data with the RANSAC algorithm

ff Bagging to improve results

ff Boosting for better learning

ff Nesting cross-validation

ff Reusing models with joblib

ff Hierarchically clustering data

ff Taking a Theano tour
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Introduction
In the 1983 War Games movie, a computer made life and death decisions that could have 
resulted in World War III. As far as I know, technology wasn't able to pull off such feats at the 
time. However, in 1997, the Deep Blue supercomputer did manage to beat a world chess 
champion. In 2005, a Stanford self-driving car drove by itself for more than 130 kilometers 
in a desert. In 2007, the car of another team drove through regular traffic for more than 
50 kilometers. In 2011, the Watson computer won a quiz against human opponents. If we 
assume that computer hardware is the limiting factor, then we can try to extrapolate into 
the future. Ray Kurzweil did just that, and according to him, we can expect human-level 
intelligence around 2029.

In this chapter, we will focus on the simpler problem of forecasting weather for the next 
day. We will assume that the weather today depends on yesterday's weather. Theoretically, 
if a butterfly flaps its wings at one location, this could trigger a chain of events causing a 
snow storm in a place thousands kilometers further away (the butterfly effect). This is not 
impossible, but very improbable. However, if we have many such incidents, a similar scenario 
will occur more often than you would suspect.

It is impossible to take into account all possible factors. In fact, we will try to make our 
life easier by ignoring some of the data we have available. We will apply classification and 
regression algorithms, as well as hierarchical clustering. Let's defer results evaluation 
to Chapter 10, Evaluating Classifiers, Regressors, and Clusters. If you are curious about 
the confusion matrix mentioned in the classification recipes, please jump to the Getting 
classification straight with the confusion matrix recipe.

Most artificial intelligence systems are nowadays, in fact, not so smart. A judge in a court of 
law could make wrong decisions because he or she is biased or having a bad day. A group 
of multiple judges should perform better. This is comparable to a machine learning project, 
in which we worry about overfitting and underfitting. Ensemble learning is a solution to this 
conundrum, and it basically means combining multiple learners in a clever way.

A major part of this chapter is about hyperparameter optimization—these are parameters of 
classifiers and regressors. To check for overfitting or underfitting, we can use learning curves, 
which show training and test scores for varying training set sizes. We can also vary the value 
of a single hyperparameter with validation curves.

Recursively eliminating features
If we have many features (explanatory variables), it is tempting to include them all in our 
model. However, we then run the risk of overfitting—getting a model that works very well for 
the training data and very badly for unseen data. Not only that, but the model is bound to be 
relatively slow and require a lot of memory. We have to weigh accuracy (or an other metric) 
against speed and memory requirements.
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We can try to ignore features or create new better compound features. For instance, in online 
advertising, it is common to work with ratios, such as the ratio of views and clicks related to 
an ad. Common sense or domain knowledge can help us select features. In the worst-case 
scenario, we may have to rely on correlations or other statistical methods. The scikit-learn 
library offers the RFE class (recursive feature elimination), which can automatically select 
features. We will use this class in this recipe. We also need an external estimator. The RFE 
class is relatively new, and unfortunately there is no guarantee that all estimators will work 
together with the RFE class.

How to do it...
1.	 The imports are as follows:

from sklearn.feature_selection import RFE
from sklearn.svm import SVC
from sklearn.svm import SVR
from sklearn.preprocessing import MinMaxScaler
import dautil as dl
import warnings
import numpy as np

2.	 Create a SVC classifier and an RFE object as follows:
warnings.filterwarnings("ignore", category=DeprecationWarning)
clf = SVC(random_state=42, kernel='linear')
selector = RFE(clf)

3.	 Load the data, scale it using a MinMaxScaler function, and add the day of the year 
as a feature:
df = dl.data.Weather.load().dropna()
df['RAIN'] = df['RAIN'] == 0
df['DOY'] = [float(d.dayofyear) for d in df.index]
scaler = MinMaxScaler()

for c in df.columns:
    if c != 'RAIN':
        df[c] = scaler.fit_transform(df[c])

4.	 Print the first row of the data as a sanity check:
dl.options.set_pd_options()
print(df.head(1))
X = df[:-1].values
np.set_printoptions(formatter={'all': '{:.3f}'.format})
print(X[0])
np.set_printoptions()
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5.	 Determine support and rankings for the features using rain or no rain as classes  
(in the context of classification):
y = df['RAIN'][1:].values
selector = selector.fit(X, y)
print('Rain support', df.columns[selector.support_])
print('Rain rankings', selector.ranking_)

6.	 Determine support and rankings for the features using temperature as a feature:
reg = SVR(kernel='linear')
selector = RFE(reg)
y = df['TEMP'][1:].values
selector = selector.fit(X, y)
print('Temperature support', df.columns[selector.support_])
print('Temperature ranking', selector.ranking_)

Refer to the following screenshot for the end result:

The code for this recipe is in the feature_elimination.py file in this book's code bundle.

How it works
The RFE class selects half of the features by default. The algorithm is as follows:

1.	 Train the external estimator on the data and assign weights to the features.

2.	 The features with smallest weights are removed.

3.	 Repeat the procedure until we have the necessary number of features.

See also
ff The documentation for the RFE class at http://scikit-learn.org/stable/

modules/generated/sklearn.feature_selection.RFE.html (retrieved 
November 2015)

http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
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Applying principal component analysis for 
dimension reduction

Principal component analysis (PCA), invented by Karl Pearson in 1901, is an algorithm that 
transforms data into uncorrelated orthogonal features called principal components. The 
principal components are the eigenvectors of the covariance matrix.

Sometimes, we get better results by scaling the data prior to applying PCA, although this is 
not strictly necessary. We can interpret PCA as projecting data to a lower dimensional space. 
Some of the principal components contribute relatively little information (low variance); 
therefore, we can omit them. We have the following transformation:

( )9.1 L LT XW=

The result is the matrix TL, with the same number of rows as the original matrix but a lower 
number of columns.

Dimensionality reduction is, of course, useful for visualization and modeling and to reduce 
the chance of overfitting. In fact, there is a technique called Principal component regression 
(PCR), which uses this principle. In a nutshell, PCR performs the following steps:

1.	 Transforms the data to a lower dimensional space with PCA.

2.	 Performs linear regression in the new space.

3.	 Transforms the result back to the original coordinate system.

How to do it...
1.	 The imports are as follows:

import dautil as dl
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt
from sklearn.preprocessing import scale

2.	 Load the data as follows and group by the day of the year:
df = dl.data.Weather.load().dropna()
df = dl.ts.groupby_yday(df).mean()
X = df.values

3.	 Apply PCA to project the data into a two-dimensional space:
pca = PCA(n_components=2)
X_r = pca.fit_transform(scale(X)).T
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4.	 Plot the result of the transformation:
plt.scatter(X_r[0], X_r[1])
plt.xlabel('x')
plt.ylabel('y')
plt.title('Dimension Reducion with PCA')

Refer to the following screenshot for the end result:

The code is in the applying_pca.ipynb file in this book's code bundle.

See also
ff The Wikipedia page about PCA at https://en.wikipedia.org/wiki/

Principal_component_analysis (retrieved November 2015)

ff The Wikipedia page about PCR at https://en.wikipedia.org/wiki/
Principal_component_regression (retrieved November 2015)

ff The documentation for the PCA class at http://scikit-learn.org/stable/
modules/generated/sklearn.decomposition.PCA.html (retrieved 
November 2015

https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_regression
https://en.wikipedia.org/wiki/Principal_component_regression
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
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Applying linear discriminant analysis for 
dimension reduction

Linear discriminant analysis (LDA) is an algorithm that looks for a linear combination 
of features in order to distinguish between classes. It can be used for classification or 
dimensionality reduction by projecting to a lower dimensional subspace. LDA requires  
a target attribute both for classification and dimensionality reduction.

If we represent class densities as multivariate Gaussians, then LDA assumes that the classes 
have the same covariance matrix. We can use training data to estimate the parameters of the 
class distributions.

In scikit-learn, lda.LDA has been deprecated in 0.17 and renamed discriminant_
analysis.LinearDiscriminantAnalysis. The default solver of this class uses singular 
value decomposition, does not need to calculate the covariance matrix, and is therefore fast.

How to do it...
The code is in the applying_lda.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import dautil as dl
from sklearn.discriminant_analysis import 
LinearDiscriminantAnalysis
import matplotlib.pyplot as plt

2.	 Load the data as follows:
df = dl.data.Weather.load().dropna()
X = df.values
y = df['WIND_DIR'].values

3.	 Apply LDA to project the data into a two-dimensional space:
lda = LinearDiscriminantAnalysis(n_components=2)
X_r = lda.fit(X, y).transform(X).T

4.	 Plot the result of the transformation:
plt.scatter(X_r[0], X_r[1])
plt.xlabel('x')
plt.ylabel('y')
plt.title('Dimension Reduction with LDA')
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Refer to the following screenshot for the end result:

See also
ff The Wikipedia page about LDA at https://en.wikipedia.org/wiki/Linear_

discriminant_analysis (retrieved November 2015)

ff The relevant scikit-learn documentation is http://scikit-learn.org/
stable/modules/generated/sklearn.discriminant_analysis.
LinearDiscriminantAnalysis.html (retrieved November 2015)

Stacking and majority voting for multiple 
models

It is generally believed that two people know more than one person alone. A democracy 
should work better than a dictatorship. In machine learning, we don't have humans making 
decisions, but algorithms. When we have multiple classifiers or regressors working together, 
we speak of ensemble learning.

There are many ensemble learning schemes. The simplest setup does majority voting 
for classification and averaging for regression. In scikit-learn 0.17, you can use the 
VotingClassifier class to do majority voting. This classifier lets you emphasize or 
suppress classifiers with weights.

https://en.wikipedia.org/wiki/Linear_discriminant_analysis
https://en.wikipedia.org/wiki/Linear_discriminant_analysis
http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
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Stacking takes the outputs of machine learning estimators and then uses those as inputs for 
another algorithm. You can, of course, feed the output of the higher-level algorithm to another 
predictor. It is possible to use any arbitrary topology, but for practical reasons, you should try a 
simple setup first.

How to do it...
1.	 The imports are as follows:

import dautil as dl
from sklearn.tree import DecisionTreeClassifier
import numpy as np
import ch9util
from sklearn.ensemble import VotingClassifier
from sklearn.grid_search import GridSearchCV
from IPython.display import HTML

2.	 Load the data and create three decision tree classifiers:
X_train, X_test, y_train, y_test = ch9util.rain_split()
default = DecisionTreeClassifier(random_state=53, min_samples_
leaf=3,
                                 max_depth=4)
entropy = DecisionTreeClassifier(criterion='entropy',
                                 min_samples_leaf=3, max_depth=4,
                                 random_state=57)
random = DecisionTreeClassifier(splitter='random', min_samples_
leaf=3,
                                max_depth=4, random_state=5)

3.	 Use the classifiers to take a vote:
clf = VotingClassifier([('default', default), 
                        ('entropy', entropy), ('random', random)])
params = {'voting': ['soft', 'hard'],
         'weights': [None, (2, 1, 1), (1, 2, 1), (1, 1, 2)]}
gscv = GridSearchCV(clf, param_grid=params, n_jobs=-1, cv=5)
gscv.fit(X_train, y_train)
votes = gscv.predict(X_test)

preds = []
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for clf in [default, entropy, random]:
    clf.fit(X_train, y_train)
    preds.append(clf.predict(X_test))

preds = np.array(preds)

4.	 Plot the confusion matrix for the votes-based forecast:
%matplotlib inline
context = dl.nb.Context('stacking_multiple')
dl.nb.RcWidget(context)

sp = dl.plotting.Subplotter(2, 2, context)
html = ch9util.report_rain(votes, y_test, gscv.best_params_, 
sp.ax)
sp.ax.set_title(sp.ax.get_title() + ' | Voting')

5.	 Plot the confusion matrix for the stacking-based forecast:
default.fit(preds_train.T, y_train)
stacked_preds = default.predict(preds.T)
html += ch9util.report_rain(stacked_preds, 
                            y_test, default.get_params(), sp.next_
ax())
sp.ax.set_title(sp.ax.get_title() + ' | Stacking')
ch9util.report_rain(default.predict(preds.T), y_test)

6.	 Plot the learning curves of the voting and stacking classifiers:
ch9util.plot_learn_curve(sp.next_ax(), gscv.best_estimator_, X_
train,
                         y_train, title='Voting')

ch9util.plot_learn_curve(sp.next_ax(), default, X_train,
                         y_train, title='Stacking')
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Refer to the following screenshot for the end result:

The code is in the stacking_multiple.ipynb file in this book's code bundle.

See also
ff The documentation for the VotingClassifier class at http://scikit-learn.

org/stable/modules/generated/sklearn.ensemble.VotingClassifier.
html (retrieved November 2015)

ff The Wikipedia section about stacking at https://en.wikipedia.org/wiki/
Ensemble_learning#Stacking (retrieved November 2015)

http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
https://en.wikipedia.org/wiki/Ensemble_learning#Stacking
https://en.wikipedia.org/wiki/Ensemble_learning#Stacking
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Learning with random forests
The if a: else b statement is one of the most common statements in Python 
programming. By nesting and combining such statements, we can build a so-called decision 
tree. This is similar to an old fashioned flowchart, although flowcharts also allow loops. The 
application of decision trees in machine learning is called decision tree learning. The end 
nodes of the trees in decision tree learning, also known as leaves, contain the class labels of 
a classification problem. Each non-leaf node is associated with a Boolean condition involving 
feature values.

Decision trees can be used to deduce relatively simple rules. Being able to produce such 
results is, of course, a huge advantage. However, you have to wonder how good these rules 
are. If we add new data, would we get the same rules?

If one decision tree is good, a whole forest should be even better. Multiple trees should 
reduce the chance of overfitting. However, as in a real forest, we don't want only one type of 
tree. Obviously, we would have to average or decide by majority voting what the appropriate 
result should be.

In this recipe, we will apply the random forest algorithm invented by Leo Breiman and Adele 
Cutler. The "random" in the name refers to randomly selecting features from the data. We use 
all the data but not in the same decision tree.

Random forests also apply bagging (bootstrap aggregating), which we will discuss in the 
Bagging to improve results recipe. The bagging of decision trees consists of the following steps:

1.	 Sample training examples with replacement and assign them to a tree.

2.	 Train the trees on their assigned data.

We can determine the correct number of trees by cross-validation or by plotting the test and 
train error against the number of trees.

How to do it...
The code is in the random_forest.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import dautil as dl
from sklearn.grid_search import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
import ch9util
import numpy as np
from IPython.display import HTML
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2.	 Load the data and do a prediction as follows:
X_train, X_test, y_train, y_test = ch9util.rain_split()
clf = RandomForestClassifier(random_state=44)
params = {
    'max_depth': [2,  4],
    'min_samples_leaf': [1, 3],
    'criterion': ['gini', 'entropy'],
    'n_estimators': [100, 200]
}

rfc = GridSearchCV(estimator=RandomForestClassifier(),
                   param_grid=params, cv=5, n_jobs=-1)
rfc.fit(X_train, y_train)
preds = rfc.predict(X_test)

3.	 Plot the rain forecast confusion matrix as follows:
sp = dl.plotting.Subplotter(2, 2, context)
html = ch9util.report_rain(preds, y_test, rfc.best_params_, sp.ax)

4.	 Plot a validation curve for a range of forest sizes:
ntrees = 2 ** np.arange(9)
ch9util.plot_validation(sp.next_ax(), rfc.best_estimator_, 
                        X_train, y_train, 'n_estimators', ntrees)

5.	 Plot a validation curve for a range of depths:
depths = np.arange(2, 9)
ch9util.plot_validation(sp.next_ax(), rfc.best_estimator_, 
                        X_train, y_train, 'max_depth', depths)

6.	 Plot the learning curve of the best estimator:
ch9util.plot_learn_curve(sp.next_ax(), 
                         rfc.best_estimator_, X_train,y_train)
HTML(html + sp.exit())
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Refer to the following screenshot for the end result:

There's more…
Random forests classification is considered such a versatile algorithm that we can use it for 
almost any classification task. Genetic algorithms and genetic programming can do a grid 
search or optimization in general.

We can consider a program to be a sequence of operators and operands that generates  
a result. This is a very simplified model of programming, of course. However, in such a  
model, it is possible to evolve programs using natural selection modeled after biological 
theories. A genetic program is self-modifying with huge adaptability, but we get a lower level  
of determinism.
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The TPOT project is an attempt to evolve machine learning pipelines (currently uses a small 
number of classifiers including random forests). I forked TPOT 0.1.3 on GitHub and made 
some changes. TPOT uses deap for the genetic programming parts, which you can install  
as follows:

$ pip install deap

I tested the code with deap 1.0.2. Install my changes under tag r1 as follows:

$ git clone git@github.com:ivanidris/tpot.git

$ cd tpot

$ git checkout r1

$ python setup.py install

You can also get the code from https://github.com/ivanidris/tpot/releases/
tag/r1. The following code from the rain_pot.py file in this book's code bundle 
demonstrates how to fit and score rain predictions with TPOT:

import ch9util
from tpot import TPOT

X_train, X_test, y_train, y_test = ch9util.rain_split()
tpot = TPOT(generations=7, population_size=110, verbosity=2)
tpot.fit(X_train, y_train)
print(tpot.score(X_train, y_train, X_test, y_test))

See also
ff The Wikipedia page about random forests at https://en.wikipedia.org/wiki/

Random_forest (retrieved November 2015)

ff The documentation for the RandomForestClassifier class at http://
scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html (retrieved November 2015)

Fitting noisy data with the RANSAC 
algorithm

We discussed the issue of outliers in the context of regression elsewhere in this book (refer to 
the See also section at the end of this recipe). The issue is clear—the outliers make it difficult 
to properly fit our models. The RANdom SAmple Consensus algorithm (RANSAC) does a best 
effort attempt to fit our data in an iterative manner. RANSAC was introduced by Fishler and 
Bolles in 1981.

https://github.com/ivanidris/tpot/releases/tag/r1
https://github.com/ivanidris/tpot/releases/tag/r1
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Random_forest
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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We often have some knowledge about our data, for instance the data may follow a normal 
distribution. Or, the data may be a mix produced by multiple processes with different 
characteristics. We could also have abnormal data due to glitches or errors in data 
transformation. In such cases, it should be easy to identify outliers and deal with them 
appropriately. The RANSAC algorithm doesn't know your data, but it also assumes that  
there are inliers and outliers.

The algorithm goes through a fixed number of iterations. The object is to find a set of inliers  
of specified size (consensus set).

RANSAC performs the following steps:

1.	 Randomly select as small a subset of the data as possible and fit the model.

2.	 Check whether each data point is consistent with the fitted model in the previous 
step. Mark inconsistent points as outliers using a residuals threshold.

3.	 Accept the model if enough inliers have been found.

4.	 Re-estimate parameters with the full consensus set.

The scikit-learn RANSACRegressor class can use a suitable estimator for fitting. We will 
use the default LinearRegression estimator. We can also specify the minimum number 
of samples for fitting, the residuals threshold, a decision function for outliers, a function 
that decides whether a model is valid, the maximum number of iterations, and the required 
number of inliers in the consensus set.

How to do it...
The code is in the fit_ransac.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import ch9util
from sklearn import linear_model
from sklearn.grid_search import GridSearchCV
import numpy as np
import dautil as dl
from IPython.display import HTML
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2.	 Load the data and do a temperature prediction as follows:
X_train, X_test, y_train, y_test = ch9util.temp_split()
ransac = linear_model.RANSACRegressor(random_state=27)
params = {
    'max_trials': [50, 100, 200],
    'stop_probability': [0.98, 0.99]
}

gscv = GridSearchCV(estimator=ransac, param_grid=params, cv=5)
gscv.fit(X_train, y_train)
preds = gscv.predict(X_test)

3.	 Scatter plot the predictions against the actual values:
sp = dl.plotting.Subplotter(2, 2, context)
html = ch9util.scatter_predictions(preds, y_test, gscv.best_
params_,
                                   gscv.best_score_, sp.ax)

4.	 Plot a validation curve for a range of trial numbers:
trials = 10 * np.arange(5, 20)
ch9util.plot_validation(sp.next_ax(), gscv.best_estimator_, 
                        X_train, y_train, 'max_trials', trials)

5.	 Plot a validation curve for a range of stop probabilities:
probs = 0.01 * np.arange(90, 99)
ch9util.plot_validation(sp.next_ax(), gscv.best_estimator_, 
                        X_train, y_train, 'stop_probability', 
probs)

6.	 Plot a validation curve for a range of consensus set sizes:

ninliers = 2 ** np.arange(4, 14)
ch9util.plot_validation(sp.next_ax(), gscv.best_estimator_, 
                        X_train, y_train, 'stop_n_inliers', 
ninliers)
HTML(html + sp.exit())
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Refer to the following screenshot for the end result:

See also
ff The Wikipedia page about the RANSAC algorithm at https://en.wikipedia.

org/wiki/RANSAC (retrieved November 2015)

ff The relevant scikit-learn documentation at http://scikit-learn.org/stable/
modules/generated/sklearn.linear_model.RANSACRegressor.html 
(retrieved November 2015)

ff The Fitting a robust linear model recipe

ff The Taking variance into account with weighted least squares recipe

https://en.wikipedia.org/wiki/RANSAC
https://en.wikipedia.org/wiki/RANSAC
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html


Chapter 9

283

Bagging to improve results
Bootstrap aggregating or bagging is an algorithm introduced by Leo Breiman in 1994, which 
applies bootstrapping to machine learning problems. Bagging was also mentioned in the 
Learning with random forests recipe.

The algorithm aims to reduce the chance of overfitting with the following steps:

1.	 We generate new training sets from input training data by sampling with replacement.

2.	 Fit models to each generated training set.

3.	 Combine the results of the models by averaging or majority voting.

The scikit-learn BaggingClassifier class allows us to bootstrap training examples, 
and we can also bootstrap features as in the random forests algorithm. When we perform 
a grid search, we refer to hyperparameters of the base estimator with the prefix base_
estimator__. We will use a decision tree as the base estimator so that we can reuse  
some of the hyperparameter configuration from the Learning with random forests recipe.

How to do it...
The code is in the bagging.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import ch9util
from sklearn.ensemble import BaggingClassifier
from sklearn.grid_search import GridSearchCV
from sklearn.tree import DecisionTreeClassifier
import numpy as np
import dautil as dl
from IPython.display import HTML

2.	 Load the data and create a BaggingClassifier:
X_train, X_test, y_train, y_test = ch9util.rain_split()
clf = BaggingClassifier(base_estimator=DecisionTreeClassifier(
    min_samples_leaf=3, max_depth=4), random_state=43)
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3.	 Grid search, fit, and predict as follows:
params = {
    'n_estimators': [320, 640],
    'bootstrap_features': [True, False],
    'base_estimator__criterion': ['gini', 'entropy']
}

gscv = GridSearchCV(estimator=clf, param_grid=params,
                    cv=5, n_jobs=-1)

gscv.fit(X_train, y_train)
preds = gscv.predict(X_test)

4.	 Plot the rain forecast confusion matrix as follows:
sp = dl.plotting.Subplotter(2, 2, context)
html = ch9util.report_rain(preds, y_test, gscv.best_params_, 
sp.ax)

5.	 Plot a validation curve for a range of ensemble sizes:
ntrees = 2 ** np.arange(4, 11)
ch9util.plot_validation(sp.next_ax(), gscv.best_estimator_, 
                        X_train, y_train, 'n_estimators', ntrees)

6.	 Plot a validation curve for the max_samples parameter:
nsamples = 2 ** np.arange(4, 14)
ch9util.plot_validation(sp.next_ax(), gscv.best_estimator_, 
                        X_train, y_train, 'max_samples', nsamples)

7.	 Plot the learning curve as follows:
ch9util.plot_learn_curve(sp.next_ax(), gscv.best_estimator_, 
                         X_train, y_train)
HTML(html + sp.exit())
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Refer to the following screenshot for the end result:

See also
ff The Wikipedia page for bagging at https://en.wikipedia.org/wiki/

Bootstrap_aggregating (retrieved November 2015)

ff The documentation for the BaggingClassifier at http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.
BaggingClassifier.html (retrieved November 2015)

https://en.wikipedia.org/wiki/Bootstrap_aggregating
https://en.wikipedia.org/wiki/Bootstrap_aggregating
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html
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Boosting for better learning
Strength in numbers is the reason why large countries tend to be more successful than small 
countries. That doesn't mean that a person in a large country has a better life. But for the big 
picture, the individual person doesn't matter that much, just like in an ensemble of decision 
trees the results of a single tree can be ignored if we have enough trees.

In the context of classification, we define weak learners as learners that are just a little  
better than a baseline such as randomly assigning classes. Although weak learners are  
weak individually, like ants, together they can do amazing things just like ants can.

It makes sense to take into account the strength of each individual learner using weights.  
This general idea is called boosting. There are many boosting algorithms, of which we will  
use AdaBoost in this recipe. Boosting algorithms differ mostly in their weighting scheme.

AdaBoost uses a weighted sum to produce the final result. It is an adaptive algorithm that 
tries to boost the results for individual training examples. If you have studied for an exam, you 
may have applied a similar technique by identifying the type of questions you had trouble with 
and focusing on the difficult problems. In the case of AdaBoost, boosting is done by tweaking 
the weak learners.

How to do it...
The program is in the boosting.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import ch9util
from sklearn.grid_search import GridSearchCV
from sklearn.ensemble import AdaBoostRegressor
from sklearn.tree import DecisionTreeRegressor
import numpy as np
import dautil as dl
from IPython.display import HTML

2.	 Load the data and create an AdaBoostRegressor class:
X_train, X_test, y_train, y_test = ch9util.temp_split()
params = {
    'loss': ['linear', 'square', 'exponential'],
    'base_estimator__min_samples_leaf': [1, 2]
}
reg = AdaBoostRegressor(base_estimator=DecisionTreeRegressor(rand
om_state=28),
                        random_state=17)
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3.	 Grid search, fit, and predict as follows:
gscv = GridSearchCV(estimator=reg,
                    param_grid=params, cv=5, n_jobs=-1)
gscv.fit(X_train, y_train)
preds = gscv.predict(X_test)

4.	 Scatter plot the predictions against the actual values:
sp = dl.plotting.Subplotter(2, 2, context)
html = ch9util.scatter_predictions(preds, y_test, gscv.best_
params_,  
                                   gscv.best_score_, sp.ax)

5.	 Plot a validation curve for a range of ensemble sizes:
nestimators = 2 ** np.arange(3, 9)
ch9util.plot_validation(sp.next_ax(), gscv.best_estimator_, 
                        X_train, y_train, 'n_estimators', 
nestimators)

6.	 Plot a validation curve for a range of learning rates:
learn_rate = np.linspace(0.1, 1, 9)
ch9util.plot_validation(sp.next_ax(), gscv.best_estimator_, 
                        X_train, y_train, 'learning_rate', learn_
rate)

7.	 Plot the learning curve as follows:
ch9util.plot_learn_curve(sp.next_ax(), gscv.best_estimator_, 
                         X_train, y_train)
HTML(html + sp.exit())
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Refer to the following screenshot for the end result:

See also
ff The Wikipedia page about boosting at https://en.wikipedia.org/wiki/

Boosting_%28machine_learning%29 (retrieved November 2015)

ff The Wikipedia page about AdaBoost at https://en.wikipedia.org/wiki/
AdaBoost (retrieved November 2015)

ff The documentation for the AdaBoostRegressor class at http://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.
AdaBoostRegressor.html (retrieved November 2015)

https://en.wikipedia.org/wiki/Boosting_%28machine_learning%29
https://en.wikipedia.org/wiki/Boosting_%28machine_learning%29
https://en.wikipedia.org/wiki/AdaBoost
https://en.wikipedia.org/wiki/AdaBoost
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html
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Nesting cross-validation
If we are fitting data to a straight line, the parameters of the mathematical model will be the 
slope and intercept of the line. When we determine the parameters of a model, we fit the 
model on a subset of the data (training set), and we evaluate the performance of the model 
on the rest of the data (test set). This is called validation and there are more elaborate 
schemes. The scikit-learn GridSearchCV class uses k-fold cross-validation, for example.

Classifiers and regressors usually require extra parameters (hyperparameters) such as the 
number of components of an ensemble, which usually have nothing to do with the linear 
model as mentioned in the first sentence. It's a bit confusing to talk about models because  
we have models with plain parameters and a bigger model with hyperparameters.

Let's call the bigger model a level 2 model, although this is not standard nomenclature as far 
as I know. If we are using GridSearchCV to obtain the hyperparameters of the level 2 model, 
we have another set of parameters (not hyperparameters or level 1 parameters) to worry 
about—the number of folds and the metric used for comparison. Evaluation metrics have not 
passed the review yet (refer to Chapter 10, Evaluating Classifiers, Regressors, and Clusters), 
but there are more metrics than we used in this chapter. Also, we might worry whether we 
determined the hyperparameters on the same data as used to evaluate the results. One 
solution is to apply nested cross-validation.

Nested cross-validation consists of the following cross-validations:

ff The inner cross-validation does hyperparameter optimization, for instance  
using grid search

ff The outer cross-validation is used to evaluate performance and do statistical analysis

In this recipe, we will look at the following distributions:

ff The distribution of all the scores

ff The distribution of the best scores for each outer cross-validation iteration reported 
by GridSearchCV

ff The distribution of the mean scores for each fold

ff The distribution of the standard deviations of scores within a GridSearchCV iteration

How to do it...
The code is in the nested_cv.ipynb file in this book's code bundle:

1.	 The imports are as follows:
from sklearn.grid_search import GridSearchCV
from sklearn.cross_validation import ShuffleSplit
from sklearn.cross_validation import cross_val_score
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import dautil as dl
from sklearn.ensemble import ExtraTreesRegressor
from joblib import Memory
import numpy as np
from IPython.display import HTML

memory = Memory(cachedir='.')

2.	 Get the R-squared scores as described in the previous section:
@memory.cache
def get_scores():
    df = dl.data.Weather.load()[['WIND_SPEED', 'TEMP', 
'PRESSURE']].dropna()
    X = df.values[:-1]
    y = df['TEMP'][1:]

    params = { 'min_samples_split': [1, 3],
            'min_samples_leaf': [3, 4]}

    gscv = GridSearchCV(ExtraTreesRegressor(bootstrap=True,
                                            random_state=37),
                        param_grid=params, n_jobs=-1, cv=5)
    cv_outer = ShuffleSplit(len(X), n_iter=500,
                            test_size=0.3, random_state=55)
    r2 = []
    best = []
    means = []
    stds = []

    for train_indices, test_indices in cv_outer:
        train_i = X[train_indices], y[train_indices]
        gscv.fit(*train_i)
        test_i = X[test_indices]
        gscv.predict(test_i)
        grid_scores = dl.collect.flatten([g.cv_validation_scores
            for g in gscv.grid_scores_])
        r2.extend(grid_scores)
        means.extend(dl.collect.flatten([g.mean_validation_score
            for g in gscv.grid_scores_]))
        stds.append(np.std(grid_scores))
        best.append(gscv.best_score_)

    return {'r2': r2, 'best': best, 'mean': means, 'std': stds}
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3.	 Get the scores and load them into NumPy arrays:
scores = get_scores()
r2 = np.array(scores['r2'])
avgs = np.array(scores['mean'])
stds = np.array(scores['std'])
best = np.array(scores['best'])

4.	 Plot the distributions as follows:

sp = dl.plotting.Subplotter(2, 2, context)
dl.plotting.hist_norm_pdf(sp.ax, r2)
sp.label()

dl.plotting.hist_norm_pdf(sp.next_ax(), best)
sp.label()

dl.plotting.hist_norm_pdf(sp.next_ax(), avgs)
sp.label()

dl.plotting.hist_norm_pdf(sp.next_ax(), stds)
sp.label()
HTML(sp.exit())

Refer to the following screenshot for the end result (distributions of cross-validation results):
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See also
ff The Wikipedia page about cross-validation at https://en.wikipedia.org/

wiki/Cross-validation_%28statistics%29 (retrieved November 2015)

ff The Wikipedia page about hyperparameter optimization at https://
en.wikipedia.org/wiki/Hyperparameter_optimization (retrieved 
November 2015)

Reusing models with joblib
The joblib Memory class is a utility class that facilitates caching of function or method results 
to disk. We create a Memory object by specifying a caching directory. We can then decorate 
the function to cache or specify methods to cache in a class constructor. If you like, you can 
specify the arguments to ignore. The default behavior of the Memory class is to remove the 
cache any time the function is modified or the input values change. Obviously, you can also 
remove the cache manually by moving or deleting cache directories and files.

In this recipe, I describe how to reuse a scikit-learn regressor or classifier. The naïve method 
would be to store the object in a standard Python pickle or use joblib. However, in most cases, 
it is better to store the hyperparameters of the estimator.

We will use the ExtraTreesRegressor class as estimator. Extra trees (extremely 
randomized trees) are a variation of the random forest algorithm, which is covered in  
the Learning with random forests recipe.

How to do it...
1.	 The imports are as follows:

from sklearn.grid_search import GridSearchCV
from sklearn.ensemble import ExtraTreesRegressor
import ch9util
from tempfile import mkdtemp
import os
import joblib

2.	 Load the data and define a hyperparameter grid search dictionary:
X_train, X_test, y_train, y_test = ch9util.temp_split()
params = {'min_samples_split': [1, 3],
          'bootstrap': [True, False],
          'min_samples_leaf': [3, 4]}

https://en.wikipedia.org/wiki/Cross-validation_%28statistics%29
https://en.wikipedia.org/wiki/Cross-validation_%28statistics%29
https://en.wikipedia.org/wiki/Hyperparameter_optimization
https://en.wikipedia.org/wiki/Hyperparameter_optimization
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3.	 Do a grid search as follows:
gscv = GridSearchCV(ExtraTreesRegressor(random_state=41),
                    param_grid=params, cv=5)

4.	 Fit and predict as follows:
gscv.fit(X_train, y_train)
preds = gscv.predict(X_test)

5.	 Store the best parameters found by the grid search:
dir = mkdtemp()
pkl = os.path.join(dir, 'params.pkl')
joblib.dump(gscv.best_params_, pkl)
params = joblib.load(pkl)
print('Best params', gscv.best_params_)
print('From pkl', params)

6.	 Create a new estimator and compare the predictions:
est = ExtraTreesRegressor(random_state=41)
est.set_params(**params)
est.fit(X_train, y_train)
preds2 = est.predict(X_test)
print('Max diff', (preds - preds2).max())

Refer to the following screenshot for the end result:

The code is in the reusing_models.py file in this book's code bundle.

See also
ff The documentation for the Memory class at https://pythonhosted.org/

joblib/memory.html (retrieved November 2015)

ff The Wikipedia page about random forests at https://en.wikipedia.org/wiki/
Random_forest (retrieved November 2015)

https://pythonhosted.org/joblib/memory.html
https://pythonhosted.org/joblib/memory.html
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Random_forest
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Hierarchically clustering data
In Python Data Analysis, you learned about clustering—separating data into clusters without 
providing any hints-which is a form of unsupervised learning. Sometimes, we need to take a 
guess for the number of clusters, as we did in the Clustering streaming data with Spark recipe.

There is no restriction against having clusters contain other clusters. In such a case, we speak 
of hierarchical clustering. We need a distance metric to separate data points. Take a look at 
the following equations:
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In this recipe, we will use Euclidean distance (9.2), provided by the SciPy pdist() function. 
The distance between sets of points is given by the linkage criteria. In this recipe, we will use 
the single-linkage criteria (9.3) provided by the SciPy linkage() function.

How to do it...
The script is in the clustering_hierarchy.ipynb file in this book's code bundle:

1.	 The imports are as follows:
from scipy.spatial.distance import pdist
from scipy.cluster.hierarchy import linkage
from scipy.cluster.hierarchy import dendrogram
import dautil as dl
import matplotlib.pyplot as plt

2.	 Load the data, resample to annual values, and compute distances:
df = dl.data.Weather.load().resample('A').dropna()
dist = pdist(df)

3.	 Plot the hierarchical cluster as follows:
dendrogram(linkage(dist), labels=[d.year for d in df.index],
           orientation='right')
plt.tick_params(labelsize=8)
plt.xlabel('Cluster')
plt.ylabel('Year')
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Refer to the following screenshot for the end result:

See also
ff The Wikipedia page about hierarchical clustering at https://en.wikipedia.

org/wiki/Hierarchical_clustering (retrieved November 2015)

ff The documentation for the pdist() function at https://docs.scipy.org/doc/
scipy/reference/generated/scipy.spatial.distance.pdist.html 
(retrieved November 2015)

ff The documentation for the linkage() function at https://docs.scipy.org/
doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.
html (retrieved November 2015)

https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/Hierarchical_clustering
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
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Taking a Theano tour
Theano is a Python library created by a machine learning group in Montreal and is often 
associated with deep learning, although that is not necessarily its core purpose. Theano is 
tightly integrated with NumPy and can run code on CPU or GPU. If you are interested in the 
GPU option, refer to the documentation listed in the See also section. Theano also supports 
symbolic differentiation through symbolic variables.

According to the its documentation, Theano is a cross between NumPy and SymPy. It is 
possible to implement machine learning algorithms with Theano, but it's not as easy or 
convenient as using scikit-learn. However, you may get the potential advantages of higher 
parallelism and numerical stability.

In this recipe, we will perform linear regression of temperature data using gradient descent. 
Gradient descent is an optimization algorithm that we can use in a regression context to 
minimize fit residuals. The gradient measures how steep a function is. The algorithm takes 
many steps proportional to how steep the gradient is in order to find a local minimum. We are 
trying to go downhill, but we don't know in which direction we can find a local minimum. So, 
going for a large move down should on average get us down faster, but there is no guarantee. 
In some cases, it may help to smooth the function (smoother hill), so we don't spend a lot of 
time oscillating.

Getting ready
Install Theano with the following command:

$ pip install --no-deps git+git://github.com/Theano/Theano.git 

I tested the code with the bleeding edge version as of November 2015.

How to do it...
The code is in the theano_tour.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import theano
import numpy as np
import theano.tensor as T
import ch9util
from sklearn.cross_validation import train_test_split
from sklearn.metrics import r2_score
import dautil as dl
from IPython.display import HTML
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2.	 Load the temperature data and define Theano symbolic variables:
temp = dl.data.Weather.load()['TEMP'].dropna()
X = temp.values[:-1]
y = temp.values[1:]
X_train, X_test, y_train, y_test = train_test_split(X, y, random_
state=16)
w = theano.shared(0., name ='w')
c = theano.shared(0., name ='c')

x = T.vector('x')
y = T.vector('y')

3.	 Define prediction and cost (loss) functions to minimize:
prediction = T.dot(x, w) + c
cost = T.sum(T.pow(prediction - y, 2))/(2 * X_train.shape[0])
Define gradient functions as follows:
gw = T.grad(cost, w)
gc = T.grad(cost, c)

learning_rate = 0.01
training_steps = 10000

4.	 Define the training function as follows:
train = theano.function([x, y], cost, updates =
                        [(w, w - learning_rate * gw),
                         (c, c - learning_rate * gc)])
predict = theano.function([x], prediction)

5.	 Train the estimator as follows:
for i in range(training_steps):
    train(X_train.astype(np.float), y_train)

6.	 Predict and visualize the prediction as follows:
preds = predict(X_test)
r2 = r2_score(preds, y_test)
HTML(ch9util.scatter_predictions(preds, y_test, '', r2))
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Refer to the following screenshot for the end result:

See also
ff The Theano documentation at http://deeplearning.net/software/theano/ 

(retrieved November 2015)

ff The Wikipedia page about gradient descent at https://en.wikipedia.org/
wiki/Gradient_descent (retrieved November 2015)

http://deeplearning.net/software/theano/
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Gradient_descent
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10
Evaluating Classifiers, 

Regressors, and 
Clusters

In this chapter, we will cover the following recipes:

ff Getting classification straight with the confusion matrix

ff Computing precision, recall, and F1-score

ff Examining a receiver operating characteristic and the area under a curve

ff Visualizing the goodness of fit

ff Computing MSE and median absolute error

ff Evaluating clusters with the mean silhouette coefficient

ff Comparing results with a dummy classifier

ff Determining MAPE and MPE

ff Comparing with a dummy regressor

ff Calculating the mean absolute error and the residual sum of squares

ff Examining the kappa of classification

ff Taking a look at the Matthews correlation coefficient
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Introduction
Evaluating classifiers, regressors, and clusters is a critical multidimensional problem  
involving many aspects. Purely from an engineering perspective, we worry about speed, 
memory, and correctness. Under some circumstances, speed is everything. If memory is 
scarce, of course, we have to make that our priority. The world is a giant labyrinth full of 
choices, and you are sometimes forced to choose one model over others instead of using 
multiple models in an ensemble. We should, of course, inform our rational decision with 
appropriate evaluation metrics.

There are so many evaluation metrics out there that you would need multiple books to 
describe them all. Obviously, many of the metrics are very similar. Some of them are accepted 
and popular, and of those metrics, some are implemented in scikit-learn.

We will evaluate the classifiers and regressors from Chapter 9, Ensemble Learning and 
Dimensionality Reduction. We applied those estimators to the sample problem of weather 
forecasting. This is not necessarily a problem at which humans are good. Achieving human 
performance is the goal for some problems, such as face recognition, character recognition, 
spam classification, and sentiment analysis. As a baseline to beat, we often choose some 
form of random guessing.

Getting classification straight with the 
confusion matrix

Accuracy is a metric that measures how well a model has performed in a given context. 
Accuracy is the default evaluation metric of scikit-learn classifiers. Unfortunately, accuracy 
is one-dimensional, and it doesn't help when the classes are unbalanced. The rain data we 
examined in Chapter 9, Ensemble Learning and Dimensionality Reduction, is pretty balanced. 
The number of rainy days is almost equal to the number of days on which it doesn't rain. In the 
case of e-mail spam classification, at least for me, the balance is shifted toward spam.

A confusion matrix is a table that is usually used to summarize the results of classification. 
The two dimensions of the table are the predicted class and the target class. In the context of 
binary classification, we talk about positive and negative classes. Naming a class negative is 
arbitrary—it doesn't necessarily mean that it is bad in some way. We can reduce any multi-class 
problem to one class versus the rest of the problem; so, when we evaluate binary classification, 
we can extend the framework to multi-class classification. A class can either be correctly 
predicted or not; we label those instances with the words true and false accordingly. 
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We have four combinations of true, false, positive, and negative, as described in the  
following table:

Predicted class
Target class True positives: It rained and we 

correctly predicted it.
False positives: We incorrectly 
predicted that it would rain.

False negatives: It did rain, but we 
predicted that it wouldn't.

True negatives: It didn't rain, and 
we correctly predicted it.

How to do it...
1.	 The imports are as follows:

import numpy as np
from sklearn.metrics import confusion_matrix
import seaborn as sns
import dautil as dl
from IPython.display import HTML
import ch10util

2.	 Define the following function to plot the confusion matrix:
def plot_cm(preds, y_test, title, cax):
    cm = confusion_matrix(preds.T, y_test)
    normalized_cm = cm/cm.sum().astype(float)
    sns.heatmap(normalized_cm, annot=True, fmt='.2f', vmin=0, 
vmax=1,
                xticklabels=['Rain', 'No Rain'],
                yticklabels=['Rain', 'No Rain'], ax=cax)
    cax.set_xlabel('Predicted class')
    cax.set_ylabel('Expected class')
    cax.set_title('Confusion Matrix for Rain Forecast | ' + title)

3.	 Load the target values and plot the confusion matrix for the random forest classifier, 
bagging classifier, voting, and stacking classifier:
y_test = np.load('rain_y_test.npy')
sp = dl.plotting.Subplotter(2, 2, context)

plot_cm(y_test, np.load('rfc.npy'), 'Random Forest', sp.ax)

plot_cm(y_test, np.load('bagging.npy'), 'Bagging', sp.next_ax())

plot_cm(y_test, np.load('votes.npy'),'Votes', sp.next_ax())

plot_cm(y_test, np.load('stacking.npy'), 'Stacking', sp.next_ax())
sp.fig.text(0, 1, ch10util.classifiers())
HTML(sp.exit())
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Refer to the following screenshot for the end result:

The source code is in the conf_matrix.ipynb file in this book's code bundle.

How it works
We displayed four confusion matrices for four classifiers, and the four numbers of each matrix 
seem to be repeating. Of course, the numbers are not exactly equal; however, you have to 
allow for some random variation.
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See also
ff The Wikipedia page about the confusion matrix at https://en.wikipedia.org/

wiki/Confusion_matrix (retrieved November 2015)

ff The confusion_matrix() function documented at http://scikit-learn.
org/stable/modules/generated/sklearn.metrics.confusion_matrix.
html (retrieved November 2015)

Computing precision, recall, and F1-score
In the Getting classification straight with the confusion matrix recipe, you learned that we can 
label classified samples as true positives, false positives, true negatives, and false negatives. 
With the counts of these categories, we can calculate many evaluation metrics of which we 
will cover four in this recipe, as given by the following equations:
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These metrics range from zero to one, with zero being the worst theoretical score and  
one being the best. Actually, the worst score would be the one we get by random guessing. 
The best score in practice may be lower than one because in some cases we can only hope  
to emulate human performance, and there may be ambiguity about what correct classification 
should be, for instance, in the case of sentiment analysis (covered in the Python Data  
Analysis book).

ff The accuracy (10.1) is the ratio of correct predictions.

ff Precision (10.2) measures relevance as the likelihood of classifying a negative class 
sample as positive. Choosing which class is positive is somewhat arbitrary, but let's 
say that a rainy day is positive. High precision would mean that we labeled a relatively 
small number of non-rainy (negative) days as rainy. For a search (web, database, or 
other), it would mean a relatively high number of relevant results.

https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Confusion_matrix
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
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ff Recall (10.3) is the likelihood of finding all the positive samples. If again, rainy 
days are our positive class, the more rainy days are classified correctly, the higher 
the recall. For a search, we can get a perfect recall by returning all the documents 
because this will automatically return all the relevant documents. A human brain 
is a bit like a database, and in that context, recall will mean the likelihood of 
remembering, for instance, how a certain Python function works.

ff The F1 score (10.4) is the harmonic mean of precision and recall (actually, there 
are multiple variations of the F1 score). The G score uses the geometric mean; but, 
as far as I know, it is less popular. The idea behind the F1 score, related F scores 
and G scores, is to combine the precision and recall. That doesn't necessarily make 
it the best metric. There are other metrics you may prefer, such as the Matthews 
correlation coefficient (refer to the Taking a look at the Matthews correlation 
coefficient recipe) and Cohen's kappa (refer to the Examining kappa of classification 
recipe). When we facie the choice of so many classification metrics, we obviously 
want the best metric. However, you have to make the choice based on your situation, 
as there is no metric that fits all.

How to do it...
1.	 The imports are as follows:

import numpy as np
from sklearn import metrics
import ch10util
import dautil as dl
from IPython.display import HTML

2.	 Load the target values and calculate the metrics:
y_test = np.load('rain_y_test.npy')
accuracies = [metrics.accuracy_score(y_test, preds)
              for preds in ch10util.rain_preds()]
precisions = [metrics.precision_score(y_test, preds)
              for preds in ch10util.rain_preds()]
recalls = [metrics.recall_score(y_test, preds)
           for preds in ch10util.rain_preds()]
f1s = [metrics.f1_score(y_test, preds)
       for preds in ch10util.rain_preds()]

3.	 Plot the metrics for the rain forecasts:
sp = dl.plotting.Subplotter(2, 2, context)
ch10util.plot_bars(sp.ax, accuracies)
sp.label()
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ch10util.plot_bars(sp.next_ax(), precisions)
sp.label()

ch10util.plot_bars(sp.next_ax(), recalls)
sp.label()

ch10util.plot_bars(sp.next_ax(), f1s)
sp.label()
sp.fig.text(0, 1, ch10util.classifiers())
HTML(sp.exit())

Refer to the following screenshot for the end result:

The code is in the precision_recall.ipynb file in this book's code bundle.
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See also
ff The Wikipedia page about precision and recall at https://en.wikipedia.org/

wiki/Precision_and_recall (retrieved November 2015)

ff The precision_score() function documented at http://scikit-learn.org/
stable/modules/generated/sklearn.metrics.precision_score.html 
(retrieved November 2015)

ff The recall_score() function documented at http://scikit-learn.org/
stable/modules/generated/sklearn.metrics.recall_score.html 
(retrieved November 2015)

ff The f1_score() function documented at http://scikit-learn.org/stable/
modules/generated/sklearn.metrics.f1_score.html (retrieved November 
2015)

Examining a receiver operating 
characteristic and the area under a curve

The receiver operating characteristic (ROC) is a plot of the recall (10.3) and the false 
positive rate (FPR) of a binary classifier. The FPR is given by the following equation:
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In this recipe, we will plot the ROC for the various classifiers we used in Chapter 9, Ensemble 
Learning and Dimensionality Reduction. Also, we will plot the curve associated with random 
guessing and the ideal curve. Obviously, we want to beat the baseline and get as close as 
possible to the ideal curve.

The area under the curve (AUC, ROC AUC, or AUROC) is another evaluation metric that 
summarizes the ROC. AUC can also be used to compare models, but it provides less 
information than ROC.

https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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How to do it...
1.	 The imports are as follows:

from sklearn import metrics
import numpy as np
import ch10util
import dautil as dl
from IPython.display import HTML

2.	 Load the data and calculate metrics:
y_test = np.load('rain_y_test.npy')
roc_aucs = [metrics.roc_auc_score(y_test, preds)
            for preds in ch10util.rain_preds()]

3.	 Plot the AUROC for the rain predictors:
sp = dl.plotting.Subplotter(2, 1, context)
ch10util.plot_bars(sp.ax, roc_aucs)
sp.label()

4.	 Plot the ROC curves for the rain predictors:
cp = dl.plotting.CyclePlotter(sp.next_ax())

for preds, label in zip(ch10util.rain_preds(),
                        ch10util.rain_labels()):
    fpr, tpr, _ = metrics.roc_curve(y_test, preds,
                                    pos_label=True)
    cp.plot(fpr, tpr, label=label)
    
fpr, tpr, _ = metrics.roc_curve(y_test, y_test)
sp.ax.plot(fpr, tpr, 'k', lw=4, label='Ideal')
sp.ax.plot(np.linspace(0, 1), np.linspace(0, 1), 
           '--', label='Baseline')
sp.label()
sp.fig.text(0, 1, ch10util.classifiers())
HTML(sp.exit())
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Refer to the following screenshot for the end result:

The code is in the roc_auc.ipynb file in this book's code bundle.

See also
ff The Wikipedia page about the ROC at https://en.wikipedia.org/wiki/

Receiver_operating_characteristic (retrieved November 2015)

ff The roc_auc_score() function documented at http://scikit-learn.org/
stable/modules/generated/sklearn.metrics.roc_auc_score.html 
(retrieved November 2015)

https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
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Visualizing the goodness of fit
We expect, or at least hope, that the residuals of regression are just random noise. If that  
is not the case, then our regressor may be ignoring information. We expect the residuals  
to be independent and normally distributed. It is relatively easy to check with a histogram or  
a QQ plot. In general, we want the mean of the residuals to be as close to zero as possible, 
and we want the variance of the residuals to be as small as possible. An ideal fit will have 
zero-valued residuals.

How to do it...
1.	 The imports are as follows:

import numpy as np
import matplotlib.pyplot as plt
import dautil as dl
import seaborn as sns
from scipy.stats import probplot
from IPython.display import HTML

2.	 Load the target and predictions for the boosting regressor:
y_test = np.load('temp_y_test.npy')
preds = np.load('boosting.npy')

3.	 Plot the actual and predicted values as follows:
sp = dl.plotting.Subplotter(2, 2, context)
cp = dl.plotting.CyclePlotter(sp.ax)
cp.plot(y_test)
cp.plot(preds)
sp.ax.set_ylabel(dl.data.Weather.get_header('TEMP'))
sp.label()

4.	 Plot the residuals on their own as follows:
residuals = preds - y_test
sp.next_ax().plot(residuals)
sp.label()

5.	 Plot the distribution of the residuals:
sns.distplot(residuals, ax=sp.next_ax())
sp.label()

6.	 Plot a QQ plot of the residuals:
probplot(residuals, plot=sp.next_ax())
HTML(sp.exit())



Evaluating Classifiers, Regressors, and Clusters

310

Refer to the following screenshot for the end result:

The code is in the visualizing_goodness.ipynb file in this book's code bundle.

See also
ff The probplot() function documented at https://docs.scipy.org/doc/

scipy-0.16.0/reference/generated/scipy.stats.probplot.html 
(retrieved November 2015)

Computing MSE and median absolute error
The mean squared error (MSE) and median absolute error (MedAE) are popular regression 
metrics. They are given by the following equations:
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https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.stats.probplot.html
https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.stats.probplot.html
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The MSE (10.6) is analogous to population variance. The square root of the MSE (RMSE) is, 
therefore, analogous to standard deviation. The units of the MSE are the same as the variable 
under analysis—in our case, temperature. An ideal fit has zero-valued residuals and, therefore, 
its MSE is equal to zero. Since we are dealing with squared errors, the MSE has values that 
are larger or ideally equal to zero.

The MedAE is similar to the MSE, but we start with the absolute values of the residuals, and 
we use the median instead of the mean as the measure for centrality. The MedAE is also 
analogous to variance and is ideally zero or very small. Taking the absolute value instead of 
squaring potentially avoids numerical instability and speed issues, and the median is more 
robust for outliers than the mean. Also, taking the square tends to emphasize larger errors.

In this recipe, we will plot bootstrapped populations of MSE and MedAE for the regressors 
from Chapter 9, Ensemble Learning and Dimensionality Reduction.

How to do it...
1.	 The imports are as follows:

from sklearn import metrics
import ch10util
from IPython.display import HTML
import dautil as dl
from IPython.display import HTML

2.	 Plot the distributions of the metrics for the temperature predictors:
sp = dl.plotting.Subplotter(3, 2, context)
ch10util.plot_bootstrap('boosting',
                        metrics.mean_squared_error, sp.ax)
sp.label()

ch10util.plot_bootstrap('boosting',
                        metrics.median_absolute_error, sp.next_
ax())
sp.label()

ch10util.plot_bootstrap('etr',
                        metrics.mean_squared_error, sp.next_ax())
sp.label()

ch10util.plot_bootstrap('etr',
                        metrics.median_absolute_error, sp.next_
ax())
sp.label()
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ch10util.plot_bootstrap('ransac',
                        metrics.mean_squared_error, sp.next_ax())
sp.label()

ch10util.plot_bootstrap('ransac',
                        metrics.median_absolute_error, sp.next_
ax())
sp.label()
sp.fig.text(0, 1, ch10util.regressors())
HTML(sp.exit())

Refer to the following screenshot for the end result:

The code is in the mse.ipynb file in this book's code bundle.
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See also
ff The Wikipedia page about the MSE at https://en.wikipedia.org/wiki/Mean_

squared_error (retrieved November 2015)

ff The mean_squared_error() function documented at http://scikit-learn.
org/stable/modules/generated/sklearn.metrics.mean_squared_
error.html (retrieved November 2015)

ff The median_absolute_error() function documented at http://scikit-
learn.org/stable/modules/generated/sklearn.metrics.median_
absolute_error.html (retrieved November 2015)

Evaluating clusters with the mean  
silhouette coefficient

Clustering is an unsupervised machine learning type of analysis. Although we don't know in 
general what the best clusters are, we can still get an idea of how good the result of clustering 
is. One way is to calculate the silhouette coefficients as defined in the following equation:
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In the preceding equation, a(i) is the average dissimilarity of sample i with respect to other 
samples in the same cluster. A small a(i) indicates that the sample belongs in its cluster. b(i) 
is the lowest average dissimilarity of i to other cluster. It indicates the next best cluster for i. If 
the silhouette coefficients s(i) of a sample is close to 1, it means that the sample is properly 
assigned. The value of s(i) varies between -1 to 1. The average of the silhouette coefficients of 
all samples measures the quality of the clusters.

We can use the mean silhouette coefficient to inform our decision for the number of clusters 
of the K-means clustering algorithm. The K-means clustering algorithm is covered in more 
detail in the Clustering streaming data with Spark recipe in Chapter 5, Web Mining, Databases 
and Big Data.

How to do it...
1.	 The imports are as follows:

import dautil as dl
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.metrics import silhouette_samples
from IPython.display import HTML

https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.median_absolute_error.html
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2.	 Define the following function to plot the silhouette samples:
def plot_samples(ax, years, labels, i, avg):
    silhouette_values = silhouette_samples(X, labels)
    dl.plotting.plot_text(ax, years, silhouette_values,
                          labels, add_scatter=True)
    ax.set_title('KMeans k={0} Silhouette avg={1:.2f}'.format(i, 
avg))
    ax.set_xlabel('Year')
    ax.set_ylabel('Silhouette score')

3.	 Load the data and resample it as follows:
df = dl.data.Weather.load().resample('A').dropna()
years = [d.year for d in df.index]
X = df.values

4.	 Plot the clusters for varying numbers of clusters:
sp = dl.plotting.Subplotter(2, 2, context)
avgs = []
rng = range(2, 9)

for i in rng:
    kmeans = KMeans(n_clusters=i, random_state=37)
    labels = kmeans.fit_predict(X)
    avg = silhouette_score(X, labels)
    avgs.append(avg)

    if i < 5:
        if i > 2:
            sp.next_ax()
            
        plot_samples(sp.ax, years, labels, i, avg)

sp.next_ax().plot(rng, avgs)
sp.label()
HTML(sp.exit())
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Refer to the following screenshot for the end result:

The code is in the evaluating_clusters.ipynb file in this book's code bundle.

See also
ff The Wikipedia page about the silhouette coefficient at https://en.wikipedia.

org/wiki/Silhouette_%28clustering%29 (retrieved November 2015)

ff The silhouette_score() function documented at http://scikit-learn.
org/stable/modules/generated/sklearn.metrics.silhouette_score.
html (retrieved November 2015)

https://en.wikipedia.org/wiki/Silhouette_%28clustering%29
https://en.wikipedia.org/wiki/Silhouette_%28clustering%29
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
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Comparing results with a dummy classifier
The scikit-learn DummyClassifier class implements several strategies for random guessing, 
which can serve as a baseline for classifiers. The strategies are as follows:

ff stratified: This uses the training set class distribution

ff most_frequent: This predicts the most frequent class

ff prior: This is available in scikit-learn 0.17 and predicts by maximizing the class prior

ff uniform: This uses an uniform distribution to randomly sample classes

ff constant: This predicts a user-specified class

As you can see, some strategies of the DummyClassifier class always predict the same 
class. This can lead to warnings from some scikit-learn metrics functions. We will perform 
the same analysis as we did in the Computing precision, recall, and F1 score recipe, but with 
dummy classifiers added.

How to do it...
1.	 The imports are as follows:

import numpy as np
from sklearn import metrics
import ch10util
from sklearn.dummy import DummyClassifier
from IPython.display import HTML
import dautil as dl

2.	 Load the data as follows:
y_test = np.load('rain_y_test.npy')
X_train = np.load('rain_X_train.npy')
X_test = np.load('rain_X_test.npy')
y_train = np.load('rain_y_train.npy')

3.	 Create the dummy classifiers and predict with them:
stratified = DummyClassifier(random_state=28)
frequent = DummyClassifier(strategy='most_frequent',
                           random_state=28)
prior = DummyClassifier(strategy='prior', random_state=29)
uniform = DummyClassifier(strategy='uniform',
                          random_state=29)
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preds = ch10util.rain_preds()

for clf in [stratified, frequent, prior, uniform]:
    clf.fit(X_train, y_train)
    preds.append(clf.predict(X_test))

4.	 Calculate metrics with the predictions as follows:
accuracies = [metrics.accuracy_score(y_test, p)
              for p in preds]
precisions = [metrics.precision_score(y_test, p)
              for p in preds]
recalls = [metrics.recall_score(y_test, p)
           for p in preds]
f1s = [metrics.f1_score(y_test, p)
       for p in preds]

5.	 Plot the metrics for the dummy and regular classifiers:
labels = ch10util.rain_labels()
labels.extend(['stratified', 'frequent',
               'prior', 'uniform'])

sp = dl.plotting.Subplotter(2, 2, context)
ch10util.plot_bars(sp.ax, accuracies, labels, rotate=True)
sp.label()

ch10util.plot_bars(sp.next_ax(), precisions, labels, rotate=True)
sp.label()

ch10util.plot_bars(sp.next_ax(), recalls, labels, rotate=True)
sp.label()

ch10util.plot_bars(sp.next_ax(), f1s, labels, rotate=True)
sp.label()
sp.fig.text(0, 1, ch10util.classifiers(), fontsize=10)
HTML(sp.exit())
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Refer to the following screenshot for the end result:

The code is in the dummy_clf.ipynb file in this book's code bundle.

See also
ff The DummyClassifier class documented at http://scikit-learn.org/

stable/modules/generated/sklearn.dummy.DummyClassifier.html 
(retrieved November 2015)

http://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
http://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
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Determining MAPE and MPE
The Mean Percentage Error (MPE) and Mean Absolute Percentage Error (MAPE) express 
forecasting errors as ratios, and they are, therefore, dimensionless and easy to interpret. As 
you can see in the following equations, the disadvantage of MPE and MAPE is that we run the 
risk of dividing by zero:
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It is perfectly valid for the target variable to be equal to zero. For temperature, this happens 
to be the freezing point. Freezing often occurs in winter, so we either have to ignore those 
observations or add a constant large enough to avoid dividing by zero values. In the following 
section, it becomes clear that simply ignoring observations leads to strange bootstrap 
distributions.

How to do it...
1.	 The imports are as follows:

import ch10util
import dautil as dl
from IPython.display import HTML

2.	 Plot the bootstrapped metrics as follows:
sp = dl.plotting.Subplotter(3, 2, context)
ch10util.plot_bootstrap('boosting',
                        dl.stats.mape, sp.ax)
sp.label()

ch10util.plot_bootstrap('boosting',
                        dl.stats.mpe, sp.next_ax())
sp.label()

ch10util.plot_bootstrap('etr',
                        dl.stats.mape, sp.next_ax())
sp.label()

ch10util.plot_bootstrap('etr',
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                        dl.stats.mpe, sp.next_ax())
sp.label()

ch10util.plot_bootstrap('ransac',
                        dl.stats.mape, sp.next_ax())
sp.label()

ch10util.plot_bootstrap('ransac',
                        dl.stats.mpe, sp.next_ax())
sp.label()
sp.fig.text(0, 1, ch10util.regressors())
HTML(sp.exit())

Refer to the following screenshot for the end result:

The code is in the mape_mpe.ipynb file in this book's code bundle.
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See also
ff The Wikipedia page about the MPE at https://en.wikipedia.org/wiki/Mean_

percentage_error (retrieved November 2015)

ff The Wikipedia page about the MAPE at https://en.wikipedia.org/wiki/
Mean_absolute_percentage_error (retrieved November 2015)

Comparing with a dummy regressor
The scikit-learn DummyRegressor class implements several strategies for random guessing, 
which can serve as baseline for regressors. The strategies are as follows:

ff mean: This predicts the mean of the training set.

ff median: This predicts the median of the training set.

ff quantile: This predicts a specified quantile of the training set when provided  
with the quantile parameter. We will apply this strategy by specifying the first  
and third quartile.

ff constant: This predicts a constant value that is provided by the user.

We will compare the dummy regressors with the regressors from Chapter 9, Ensemble 
Learning and Dimensionality Reduction, using R-squared, MSE, MedAE, and MPE.

How to do it...
1.	 The imports are as follows:

import numpy as np
from sklearn.dummy import DummyRegressor
import ch10util
from sklearn import metrics
import dautil as dl
from IPython.display import HTML

2.	 Load the temperature data as follows:
y_test = np.load('temp_y_test.npy')
X_train = np.load('temp_X_train.npy')
X_test = np.load('temp_X_test.npy')
y_train = np.load('temp_y_train.npy')

https://en.wikipedia.org/wiki/Mean_percentage_error
https://en.wikipedia.org/wiki/Mean_percentage_error
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error
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3.	 Create dummy regressors using the available strategies and predict tempreture  
with them:
mean = DummyRegressor()
median = DummyRegressor(strategy='median')
q1 = DummyRegressor(strategy='quantile', quantile=0.25)
q3 = DummyRegressor(strategy='quantile', quantile=0.75)

preds = ch10util.temp_preds()

for reg in [mean, median, q1, q3]:
    reg.fit(X_train, y_train)
    preds.append(reg.predict(X_test))

4.	 Calculate R-squared, MSE, median absolute error, and mean percentage error for the 
regular and dummy regressors:
r2s = [metrics.r2_score(p, y_test) for p in preds]
mses = [metrics.mean_squared_error(p, y_test)
        for p in preds]
maes = [metrics.median_absolute_error(p, y_test)
        for p in preds]
mpes = [dl.stats.mpe(y_test, p) for p in preds]

labels = ch10util.temp_labels()
labels.extend(['mean', 'median', 'q1', 'q3'])

5.	 Plot the metrics as follows:
sp = dl.plotting.Subplotter(2, 2, context)
ch10util.plot_bars(sp.ax, r2s, labels)
sp.label()

ch10util.plot_bars(sp.next_ax(), mses, labels)
sp.label()

ch10util.plot_bars(sp.next_ax(), maes, labels)
sp.label()

ch10util.plot_bars(sp.next_ax(), mpes, labels)
sp.label()
sp.fig.text(0, 1, ch10util.regressors())
HTML(sp.exit())
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Refer to the following screenshot for the end result:

The code is in the dummy_reg.ipynb file in this book's code bundle.

See also
ff The DummyRegressor class documented at http://scikit-learn.org/

stable/modules/generated/sklearn.dummy.DummyRegressor.html 
(retrieved November 2015)

ff The Computing MSE and median absolute error recipe in this chapter

ff The Determining MAPE and MPE recipe in this chapter

http://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor.html
http://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor.html
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Calculating the mean absolute error  
and the residual sum of squares

The mean absolute error (MeanAE) and residual sum of squares (RSS) are regression 
metrics given by the following equations:
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The mean absolute error (10.11) is similar to the MSE and MedAE, but it differs in one step of 
the calculation. The common feature of these metrics is that they ignore the sign of the error 
and are analogous to variance. MeanAE values are larger than or ideally equal to zero.

The RSS (10.12) is similar to the MSE, except we don't divide by the number of residuals. For 
this reason, you get larger values with the RSS. However, an ideal fit gives you a zero RSS.

How to do it...
1.	 The imports are as follows:

import ch10util
import dautil as dl
from sklearn import metrics
from IPython.display import HTML

2.	 Plot the bootstrapped metrics as follows:
sp = dl.plotting.Subplotter(3, 2, context)
ch10util.plot_bootstrap('boosting',
                        metrics.mean_absolute_error, sp.ax)
sp.label()

ch10util.plot_bootstrap('boosting',
                        dl.stats.rss, sp.next_ax())
sp.label()

ch10util.plot_bootstrap('etr',
                        metrics.mean_absolute_error, sp.next_ax())
sp.label()

ch10util.plot_bootstrap('etr',
                        dl.stats.rss, sp.next_ax())
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sp.label()

ch10util.plot_bootstrap('ransac',
                        metrics.mean_absolute_error, sp.next_ax())
sp.label()

ch10util.plot_bootstrap('ransac',
                        dl.stats.rss, sp.next_ax())
sp.label()
sp.fig.text(0, 1, ch10util.regressors())
HTML(sp.exit())

Refer to the following screenshot for the end result:

The code is in the mae_rss.ipynb file in this book's code bundle.
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See also
ff The Wikipedia page about the MeanAE at https://en.wikipedia.org/wiki/

Mean_absolute_error (retrieved November 2015)

ff The mean_absolute_error() function documented at http://scikit-learn.
org/stable/modules/generated/sklearn.metrics.mean_absolute_
error.html (retrieved November 2015)

ff The Wikipedia page about the RSS at https://en.wikipedia.org/wiki/
Residual_sum_of_squares (retrieved November 2015)

Examining the kappa of classification
Cohen's kappa measures the agreement between target and predicted class similar to 
accuracy, but it also takes into account random chance of getting the predictions. Cohen's 
kappa is given by the following equation:
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In this equation, p0 is the relative observed agreement and pe is the random chance of 
agreement derived from the data. Kappa varies between negative values and one with the 
following rough categorization from Landis and Koch:

ff Poor agreement: kappa < 0

ff Slight agreement: kappa = 0 to 0.2

ff Fair agreement: kappa = 0.21 to 0.4

ff Moderate agreement: kappa = 0.41 to 0.6

ff Good agreement: kappa = 0.61 to 0.8

ff Very good agreement: kappa = 0.81 to 1.0

I know of two other schemes to grade kappa, so these numbers are not set in stone. I think 
we can agree not to accept kappa less than 0.2. The most appropriate use case is, of course, 
to rank models. There are other variations of Cohen's kappa, but as of November 2015, they 
were not implemented in scikit-learn. scikit-learn 0.17 has added support for Cohen's kappa 
via the cohen_kappa_score() function.

https://en.wikipedia.org/wiki/Mean_absolute_error
https://en.wikipedia.org/wiki/Mean_absolute_error
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_absolute_error.html
https://en.wikipedia.org/wiki/Residual_sum_of_squares
https://en.wikipedia.org/wiki/Residual_sum_of_squares
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How to do it...
1.	 The imports are as follows:

import dautil as dl
from sklearn import metrics
import numpy as np
import ch10util
from IPython.display import HTML

2.	 Compute accuracy, precision, recall, F1-score, and kappa for the rain predictors:
y_test = np.load('rain_y_test.npy')
accuracies = [metrics.accuracy_score(y_test, preds)
              for preds in ch10util.rain_preds()]
precisions = [metrics.precision_score(y_test, preds)
              for preds in ch10util.rain_preds()]
recalls = [metrics.recall_score(y_test, preds)
           for preds in ch10util.rain_preds()]
f1s = [metrics.f1_score(y_test, preds)
       for preds in ch10util.rain_preds()]
kappas = [metrics.cohen_kappa_score(y_test, preds)
          for preds in ch10util.rain_preds()]

3.	 Scatter plot the metrics against kappa as follows:
sp = dl.plotting.Subplotter(2, 2, context)
dl.plotting.plot_text(sp.ax, accuracies, kappas,
                      ch10util.rain_labels(), add_scatter=True)
sp.label()

dl.plotting.plot_text(sp.next_ax(), precisions, kappas,
                      ch10util.rain_labels(), add_scatter=True)
sp.label()

dl.plotting.plot_text(sp.next_ax(), recalls, kappas,
                      ch10util.rain_labels(), add_scatter=True)
sp.label()

dl.plotting.plot_text(sp.next_ax(), f1s, kappas,
                      ch10util.rain_labels(), add_scatter=True)
sp.label()
sp.fig.text(0, 1, ch10util.classifiers())                     
HTML(sp.exit())
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Refer to the following screenshot for the end result:

The code is in the kappa.ipynb file in this book's code bundle.
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How it works
From the first two plots, we can conclude that the bagging classifier has the highest accuracy, 
precision, and kappa. All the classifiers have a kappa above 0.2, so they are at least 
somewhat acceptable.

See also
ff The Wikipedia page about Cohen's kappa at https://en.wikipedia.org/wiki/

Cohen's_kappa (retrieved November 2015)

Taking a look at the Matthews correlation 
coefficient

The Matthews correlation coefficient (MCC) or phi coefficient is an evaluation metric for 
binary classification invented by Brian Matthews in 1975. The MCC is a correlation coefficient 
for target and predictions and varies between -1 and 1 (best agreement). MCC is a very  
good way to summarize the confusion matrix (refer to the Getting classification straight  
with the confusion matrix recipe) as it uses all four numbers in it. The MCC is given by the 
following equation:
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How to do it...
1.	 The imports are as follows:

import dautil as dl
from sklearn import metrics
import numpy as np
import ch10util
from IPython.display import HTML

https://en.wikipedia.org/wiki/Cohen's_kappa
https://en.wikipedia.org/wiki/Cohen's_kappa
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2.	 Calculate accuracies, precisions, recalls, F1-scores, and Matthews correlation 
coefficients for the rain predictors:
y_test = np.load('rain_y_test.npy')
accuracies = [metrics.accuracy_score(y_test, preds)
              for preds in ch10util.rain_preds()]
precisions = [metrics.precision_score(y_test, preds)
              for preds in ch10util.rain_preds()]
recalls = [metrics.recall_score(y_test, preds)
           for preds in ch10util.rain_preds()]
f1s = [metrics.f1_score(y_test, preds)
       for preds in ch10util.rain_preds()]
mc = [metrics.matthews_corrcoef(y_test, preds)
      for preds in ch10util.rain_preds()]

3.	 Plot the metrics as follows:
sp = dl.plotting.Subplotter(2, 2, context)
dl.plotting.plot_text(sp.ax, accuracies, mc,
                      ch10util.rain_labels(), add_scatter=True)
sp.label()

dl.plotting.plot_text(sp.next_ax(), precisions, mc,
                      ch10util.rain_labels(), add_scatter=True)
sp.label()

dl.plotting.plot_text(sp.next_ax(), recalls, mc,
                      ch10util.rain_labels(), add_scatter=True)
sp.label()

dl.plotting.plot_text(sp.next_ax(), f1s, mc,
                      ch10util.rain_labels(), add_scatter=True)
sp.label()
sp.fig.text(0, 1, ch10util.classifiers())
HTML(sp.exit())
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Refer to the following screenshot for the end result:

The code is in the matthews_correlation.ipynb file in this book's code bundle.

See also
ff The Wikipedia page about the MCC at https://en.wikipedia.org/wiki/

Matthews_correlation_coefficient (retrieved November 2015)

ff The matthews_corrcoef() function documented at http://scikit-learn.
org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.
html (retrieved November 2015)

https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
https://en.wikipedia.org/wiki/Matthews_correlation_coefficient
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html
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11
Analyzing Images

In this chapter, we will cover the following recipes:

ff Setting up OpenCV

ff Applying Scale-Invariant Feature Transform (SIFT)

ff Detecting features with SURF

ff Quantizing colors

ff Denoising images

ff Extracting patches from an image

ff Detecting faces with Haar cascades

ff Searching for bright stars

ff Extracting metadata from images

ff Extracting texture features from images

ff Applying hierarchical clustering on images

ff Segmenting images with spectral clustering

Introduction
Image processing is a very large field of study. The techniques used for image processing 
can often (with small changes) be applied to video analysis as well. We can view image 
processing as a special type of signal processing. Signal processing is covered in Chapter 6, 
Signal Processing and Timeseries. However, images pose special challenges, such as high 
dimensionality (we can define each image pixel to be a feature) and spatial dependence  
(pixel location matters).
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The human visual system is very advanced compared to what computers can do. We are able 
to recognize objects, facial expressions, and object motion. Apparently, this has to do with 
predators and with their tendency to consume human flesh. Instead of trying to understand 
how human vision works, we will concentrate on finding features in images and clustering 
image pixels (segmenting) in this chapter.

In this chapter, we use the OpenCV library quite a lot, and since it is a fairly large library, I 
decided to create a special Docker container for this chapter only. As you probably know 
already, I made a Docker image called pydacbk. Well, the Docker container for this chapter  
is named pydacbk11.

Setting up OpenCV
OpenCV (Open Source Computer Vision) is a library for computer vision created in 2000, and 
is currently maintained by Itseez. OpenCV is written in C++, but it also has bindings for Python 
and other programming languages. OpenCV supports many operating systems and GPUs. 
There is not enough space in this chapter to cover all the features of OpenCV. Even a single 
book is probably not enough—for Pythonistas, I recommend OpenCV Computer Vision with 
Python by Joseph Howse.

Some of the third-party patented algorithms in the OpenCV 2.x.x package, such as SIFT and 
SURF (refer to the relevant recipes in this chapter), have been moved to a special GitHub 
repository. You still can use them, but you need to explicitly include them in the installation 
process.

The OpenCV build process has many options. If you are unsure which options are the best 
for you, read the OpenCV documentation or use the appropriate package manager for your 
operating system. In general, you should not use too many options. Although you have the 
flexibility to turn off certain modules, other modules may depend on them, which could lead  
to a cascade of errors.

Getting ready
If you are on Windows or Fedora, read the corresponding tutorials at http://docs.
opencv.org/3.0.0/da/df6/tutorial_py_table_of_contents_setup.html 
(retrieved December 2015). For the Ubuntu-based Docker container, I needed to install  
some prerequisites with the following commands:

$ apt-get update

$ apt-get install -y cmake make git g++

http://docs.opencv.org/3.0.0/da/df6/tutorial_py_table_of_contents_setup.html
http://docs.opencv.org/3.0.0/da/df6/tutorial_py_table_of_contents_setup.html
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How to do it...
The following instructions serve as an example and make some assumptions about your 
setup. For instance, it assumes that you are using Anaconda with Python 3. For convenience, 
I organized all the instructions in a single shell script for the Ubuntu-based Docker container; 
however, if you prefer, you can also type each line separately in a terminal.

1.	 Download the code of the core OpenCV project (if you don't have Git, you can also 
download the code from the GitHub website):
$ cd /opt

$ git clone https://github.com/Itseez/opencv.git

$ cd opencv

$ git checkout tags/3.0.0

2.	 Download the code of the (third-party) contributions to OpenCV (if you don't have Git, 
you can also download the code from the GitHub website):
$ cd /opt

$ git clone https://github.com/Itseez/opencv_contrib

$ cd opencv_contrib

$ git checkout tags/3.0.0

$ cd /opt/opencv

3.	 Make a build directory and navigate to it:
$ mkdir build

$ cd build

4.	 This step shows some of the build options available to you (you don't have to use all 
these options):
$ ANACONDA=~/anaconda

$ cmake -D CMAKE_BUILD_TYPE=RELEASE \

    -D BUILD_PERF_TESTS=OFF \

    -D BUILD_opencv_core=ON \

    -D BUILD_opencv_python2=OFF \

    -D BUILD_opencv_python3=ON \

    -D BUILD_opencv_cuda=OFF \

    -D BUILD_opencv_java=OFF \

    -D BUILD_opencv_video=ON \

    -D BUILD_opencv_videoio=ON \

    -D BUILD_opencv_world=OFF \

    -D BUILD_opencv_viz=ON \

    -D WITH_CUBLAS=OFF \



Analyzing Images

336

    -D WITH_CUDA=OFF \

    -D WITH_CUFFT=OFF \

    -D WITH_FFMPEG=OFF \

    -D PYTHON3_EXECUTABLE=${ANACONDA}/bin/python3 \

    -D PYTHON3_LIBRARY=${ANACONDA}/lib/libpython3.4m.so \

    -D PYTHON3_INCLUDE_DIR=${ANACONDA}/include/python3.4m \

    -D PYTHON3_NUMPY_INCLUDE_DIRS=${ANACONDA}/lib/python3.4/site-
packages/numpy/core/include \

    -D PYTHON3_PACKAGES_PATH=${ANACONDA}/lib/python3.4/site-
packages \

    -D BUILD_opencv_latentsvm=OFF \

    -D BUILD_opencv_xphoto=OFF \

    -D BUILD_opencv_xfeatures2d=ON \

    -D OPENCV_EXTRA_MODULES_PATH=/opt/opencv_contrib/modules \

    /opt/opencv

5.	 Run the make command (with 8 cores) and install as follows:
$ make -j8

$ sudo make install

How it works
The previous instructions assumed that you are installing OpenCV for the first time. If you are 
upgrading from OpenCV 2.x.x, you will have to take extra precautions. Also, I assumed that you 
don't want certain options and are using Anaconda with Python 3. The following table explains 
some of the build options we used:

Option Description
BUILD_opencv_python2 Support for Python 2
BUILD_opencv_python3 Support for Python 3
BUILD_opencv_java Support for the OpenCV Java bindings
PYTHON3_EXECUTABLE The location of the Python 3 executable
PYTHON3_LIBRARY The location of the Python 3 library
PYTHON3_INCLUDE_DIR The location of the Python 3 include directory
PYTHON3_NUMPY_INCLUDE_DIRS The location of the NumPy include directories
PYTHON3_PACKAGES_PATH The location of the Python 3 packages
BUILD_opencv_xfeatures2d Support for certain third-party algorithms, such as SIFT 

and SURF
OPENCV_EXTRA_MODULES_PATH The location of the code of the OpenCV third-party 

contributions
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There's more
If you don't have enough space, for instance in a Docker container, then you can clean up with 
the following commands:

$ rm -rf /opt/opencv

$ rm -rf /opt/opencv_contrib

Applying Scale-Invariant Feature Transform 
(SIFT)

The SIFT algorithm (1999) finds features in images or videos and is patented by the University 
of British Columbia. Typically, we can use the features for classification or clustering. SIFT is 
invariant with respect to translation, scaling, and rotation.

The algorithm's steps are as follows:

1.	 Blur the image at different scales using a Gaussian blur filter.

2.	 An octave corresponds to doubling the standard deviation of the filter. Group the 
blurred images by octave and difference them.

3.	 Find the local extremas across the scale for the differenced images.

4.	 Compare each pixel related to local extrema to the neighboring pixels in the same 
scale and neighboring scales.

5.	 Select the largest or smallest value from the comparison.

6.	 Reject points with low contrast.

7.	 Interpolate candidate key points (image features) to get the position on the  
original image.

Getting ready
Follow the instructions in the Setting up OpenCV recipe.

How to do it...
1.	 The imports are as follows:

import cv2
import matplotlib.pyplot as plt
import dautil as dl
from scipy.misc import face
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2.	 Plot the original image as follows:
img = face()
plt.title('Original')
dl.plotting.img_show(plt.gca(), img)
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

3.	 Plot the grayscaled image as follows:
plt.figure()
plt.title('Gray')
dl.plotting.img_show(plt.gca(), gray, cmap=plt.cm.gray)

4.	 Plot the image with keypoints (blue) as follows:
sift = cv2.xfeatures2d.SIFT_create()
(kps, descs) = sift.detectAndCompute(gray, None)
img2 = cv2.drawKeypoints(gray, kps, None, (0, 0, 255))

plt.figure()
plt.title('With Keypoints')
dl.plotting.img_show(plt.gca(), img2)

Refer to the following screenshot for the end result:

The program is in the applying_sift.ipynb file in this book's code bundle.
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See also
ff The Wikipedia page about SIFT at https://en.wikipedia.org/wiki/Scale-

invariant_feature_transform (retrieved December 2015)

ff The SIFT algorithm documented at http://docs.opencv.org/3.0.0/da/df5/
tutorial_py_sift_intro.html (retrieved December 2015)

Detecting features with SURF
Speeded Up Robust Features (SURF) is a patented algorithm similar to and inspired by SIFT 
(refer to the Applying Scale-Invariant Feature Transform recipe). SURF was introduced in 2006 
and uses Haar wavelets (refer to the Applying the discrete wavelet transform recipe). The 
greatest advantage of SURF is that it is faster than SIFT.

Take a look at the following equations:
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The algorithm steps are as follows:

1.	 Transform the image if necessary to get the grayscale equivalent.

2.	 Calculate the integral image at different scales, which is the sum of the pixels above 
and to the left of a pixel, as shown in equation (11.1). The integral image replaces the 
Gaussian filter in SIFT.

3.	 Define the Hessian matrix (11.2) containing second-order derivatives of the 
grayscale image as function of pixel location p and scale σ (11.3).

4.	 Determinants are values related to square matrices. The determinant of the  
Hessian matrix corresponds to a local change in a point. Select points with the  
largest determinant.

5.	 The scale σ is defined by 11.3, and just as with SIFT, we can define scale octaves. 
SURF works by varying the size of the filter kernel, while SIFT varies the image size. 
Interpolate the maximums from the previous step in the scale and image space.

https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
https://en.wikipedia.org/wiki/Scale-invariant_feature_transform
http://docs.opencv.org/3.0.0/da/df5/tutorial_py_sift_intro.html
http://docs.opencv.org/3.0.0/da/df5/tutorial_py_sift_intro.html
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6.	 Apply the Haar wavelet transform to a circle around key points.

7.	 Use a sliding window to sum responses.

8.	 Determine orientation from the response sums.

Getting ready
Follow the instructions in the Setting up OpenCV recipe.

How to do it...
1.	 The imports are as follows:

import cv2
import matplotlib.pyplot as plt
import dautil as dl

2.	 Plot the original image as follows:
img = cv2.imread('covers.jpg')
plt.title('Original')
dl.plotting.img_show(plt.gca(), img)

3.	 Plot the grayscaled image as follows:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

plt.figure()
plt.title('Gray')
dl.plotting.img_show(plt.gca(), gray, cmap=plt.cm.gray)
surf = cv2.xfeatures2d.SURF_create()
(kps, descs) = surf.detectAndCompute(gray, None)
img2 = cv2.drawKeypoints(gray, kps, None, (0, 0, 255))

4.	 Plot the image with keypoints (blue) as follows:
plt.figure()
plt.title('With Keypoints')
dl.plotting.img_show(plt.gca(), img2)
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Refer to the following screenshot for the end result:

The code is in the applying_surf.ipynb file in this book's code bundle.

See also
ff The Wikipedia page about SURF at https://en.wikipedia.org/wiki/

Speeded_up_robust_features (retrieved December 2015)

ff The Wikipedia page about the integral image at https://en.wikipedia.org/
wiki/Summed_area_table (retrieved December 2015)

ff The Wikipedia page about the Hessian matrix at https://en.wikipedia.org/
wiki/Hessian_matrix (retrieved December 2015)

ff The Wikipedia page about the determinant at https://en.wikipedia.org/
wiki/Determinant (retrieved December 2015)

ff The SURF algorithm documented at http://docs.opencv.org/3.0.0/df/dd2/
tutorial_py_surf_intro.html (retrieved December 2015)

Quantizing colors
In ancient times, computer games were practically monochromatic. Many years later, the 
Internet allowed us to download images, but the Web was slow, so compact images with few 
colors were preferred. We can conclude that restricting the number of colors is traditional. 
Color is a dimension of images, so we can speak of dimensionality reduction if we remove 
colors from an image. The actual process is called color quantization.

https://en.wikipedia.org/wiki/Speeded_up_robust_features
https://en.wikipedia.org/wiki/Speeded_up_robust_features
https://en.wikipedia.org/wiki/Summed_area_table
https://en.wikipedia.org/wiki/Summed_area_table
https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Hessian_matrix
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Determinant
http://docs.opencv.org/3.0.0/df/dd2/tutorial_py_surf_intro.html
http://docs.opencv.org/3.0.0/df/dd2/tutorial_py_surf_intro.html
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Usually, we represent RGB (red, green, and blue) values in three-dimensional space for each 
pixel and then cluster the points. For each cluster, we are left with a corresponding average 
color. In this recipe, we will use k-means clustering (refer to the Clustering streaming data with 
Spark recipe), although this is not necessarily the best algorithm.

Getting ready
Follow the instructions in the Setting up OpenCV recipe.

How to do it...
The code is in the quantizing_colors.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import numpy as np
import cv2
import matplotlib.pyplot as plt
import dautil as dl
from scipy.misc import face

2.	 Plot the original image as follows:
sp = dl.plotting.Subplotter(2, 2, context)
img = face()
dl.plotting.img_show(sp.ax, img)
sp.label()
Z = img.reshape((-1, 3))

Z = np.float32(Z)

3.	 Apply k-means clustering and plot the result:
criteria = (cv2.TERM_CRITERIA_MAX_ITER, 7, 1.0)

for k in [2, 4, 8]:
    _, label, center = cv2.kmeans(Z, k, None, criteria, 7,
                                  cv2.KMEANS_RANDOM_CENTERS)

    center = np.uint8(center)
    res = center[label.flatten()]
    res2 = res.reshape((img.shape))

    dl.plotting.img_show(sp.next_ax(), res2)
    sp.label()
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Refer to the following screenshot for the end result:

See also
ff The Wikipedia page about color quantization at https://en.wikipedia.org/

wiki/Color_quantization (retrieved December 2015)

ff The kmeans() function documented at http://docs.opencv.org/3.0.0/d5/
d38/group__core__cluster.html#ga9a34dc06c6ec9460e90860f15bcd
2f88 (retrieved December 2015)

Denoising images
Noise is a common phenomenon in data and also in images. Of course, noise is undesirable, 
as it does not add any value to our analysis. We typically assume that noise is normally 
distributed around zero. We consider a pixel value to be the sum of the true value and noise 
(if any). We also assume that the noise values are independent, that is, the noise value of one 
pixel is independent of another pixel.

One simple idea is to average pixels in a small window, since we suppose the expected value 
of noise to be zero. This is the general idea behind blurring. We can take this idea a step 
further and define multiple windows around a pixel, and we can then average similar patches.

OpenCV has several denoising functions and usually we need to specify the strength of the 
filter, the size of the search window, and the size of the template window for similarity checks. 
You should be careful not to set the filter strength too high because that may make the image 
not only cleaner, but also a bit blurred.

https://en.wikipedia.org/wiki/Color_quantization
https://en.wikipedia.org/wiki/Color_quantization
http://docs.opencv.org/3.0.0/d5/d38/group__core__cluster.html#ga9a34dc06c6ec9460e90860f15bcd2f88
http://docs.opencv.org/3.0.0/d5/d38/group__core__cluster.html#ga9a34dc06c6ec9460e90860f15bcd2f88
http://docs.opencv.org/3.0.0/d5/d38/group__core__cluster.html#ga9a34dc06c6ec9460e90860f15bcd2f88
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Getting ready
Follow the instructions in the Setting up OpenCV recipe.

How to do it...
1.	 The imports are as follows:

import cv2
import matplotlib.pyplot as plt
from sklearn.datasets import load_sample_image
import numpy as np
import dautil as dl

2.	 Plot the original image as follows:
img = load_sample_image('china.jpg')
dl.plotting.img_show(plt.gca(), img) 
plt.title('Original')
Z = img.reshape((-1, 3))

3.	 Add noise to the image and plot the noisy image:
np.random.seed(59)
noise = np.random.random(Z.shape) < 0.99

noisy = (Z * noise).reshape((img.shape))

plt.figure()
plt.title('Noisy')
dl.plotting.img_show(plt.gca(), noisy)

4.	 Clean the image and display it:
cleaned = cv2.fastNlMeansDenoisingColored(noisy, None, 10, 10, 7, 
21)
plt.figure()
plt.title('Cleaned')
dl.plotting.img_show(plt.gca(), cleaned)
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Refer to the following screenshot for the end result:

The code is in the denoising_images.ipynb file in this book's code bundle.

See also
ff The fastNlMeansDenoisingColored() function documented at http://docs.

opencv.org/3.0.0/d1/d79/group__photo__denoise.html#ga21abc1c8b0
e15f78cd3eff672cb6c476 (retrieved December 2015)

Extracting patches from an image
Image segmentation is a procedure that splits an image into multiple segments. The 
segments have similar color or intensity. The segments also usually have a meaning in the 
context of medicine, traffic, astronomy, or something else.

http://docs.opencv.org/3.0.0/d1/d79/group__photo__denoise.html#ga21abc1c8b0e15f78cd3eff672cb6c476
http://docs.opencv.org/3.0.0/d1/d79/group__photo__denoise.html#ga21abc1c8b0e15f78cd3eff672cb6c476
http://docs.opencv.org/3.0.0/d1/d79/group__photo__denoise.html#ga21abc1c8b0e15f78cd3eff672cb6c476
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The easiest way to segment images is with a threshold value, which produces two segments 
(if values are equal to the threshold, we put them in one of the two segments). Otsu's 
thresholding method minimizes the weighted variance of the two segments (refer to the 
following equation):
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If we segment images, it is a good idea to remove noise or foreign artifacts. With dilation  
(see the See also section) we can find parts of the image that belong to the background  
and the foreground. However, dilation leaves us with unidentified pixels.

Getting ready
Follow the instructions in Setting up OpenCV.

How to do it...
1.	 The imports are as follows:

import numpy as np
import cv2
from matplotlib import pyplot as plt
from sklearn.datasets import load_sample_image
import dautil as dl
from IPython.display import HTML

2.	 Plot the original image as follows:
sp = dl.plotting.Subplotter(2, 2, context)
img = load_sample_image('flower.jpg')
dl.plotting.img_show(sp.ax, img)
sp.label()

3.	 Plot the Otsu threshold image as follows:
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 0, 255,
                          cv2.THRESH_OTSU)

dl.plotting.img_show(sp.next_ax(), thresh)
sp.label()
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4.	 Plot the image with foreground and background distracted as follows:
kernel = np.ones((3, 3), np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN,
                           kernel, iterations=2)

bg = cv2.dilate(opening, kernel, iterations=3)

dist_transform = cv2.distanceTransform(opening, cv2.DIST_L2, 5)
_, fg = cv2.threshold(dist_transform, 0.7 * dist_transform.max(),
                      255, 0)

fg = np.uint8(fg)
rest = cv2.subtract(bg, fg)

dl.plotting.img_show(sp.next_ax(), rest)
sp.label()

5.	 Plot the image with markers as follows:
_, markers = cv2.connectedComponents(fg)
markers += 1
markers[rest == 255] = 0

dl.plotting.img_show(sp.next_ax(), markers)
sp.label()

HTML(sp.exit())

Refer to the following screenshot for the end result:

The code is in the extracting_patches.ipynb file in this book's code bundle.
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See also
ff The Wikipedia page about image segmentation at https://en.wikipedia.org/

wiki/Image_segmentation (retrieved December 2015)

ff The Wikipedia page about Otsu's method at https://en.wikipedia.org/wiki/
Otsu's_method (retrieved December 2015)

ff The Wikipedia page about dilation at https://en.wikipedia.org/wiki/
Dilation_%28morphology%29 (retrieved December 2015)

Detecting faces with Haar cascades
Faces are an identifying feature of human anatomy. Strictly speaking, many animals also 
have faces, but that is less relevant for most practical applications. Face detection tries to 
find (rectangular) areas in an image that represent faces. Face detection is a type of object 
detection, because faces are a type of object.

Most face detection algorithms are good at detecting clean fron-facing faces because most 
training images fall in that category. Tilted faces, bright lights, or noisy images may cause 
problems for face detection. It is possible to deduce age, gender, or ethnicity (for instance,  
the presence of epicanthic folds) from a face, which of course is useful for marketing.

A possible application could be analyzing profile pictures on social media sites. OpenCV uses 
a Haar feature-based cascade classifiers system to detect faces. The system is also named 
the Viola–Jones object detection framework after its inventorsr who proposed it in 2001.

The algorithm has the following steps:

1.	 Haar feature selection: Haar features are similar to Haar wavelets (as covered in  
the Applying the discrete wavelet transform recipe in Chapter 6, Signal Processing 
and Timeseries).

2.	 Creating an integral image (refer to the Detecting features with SURF recipe).

3.	 Adaboost training (refer to the Boosting for better learning recipe in Chapter 9, 
Ensemble Learning and Dimensionality Reduction).

4.	 Cascading classifiers.

When we look at face images, we can create heuristics related to brightness.

For instance, the nose region is brighter than regions directly to its left and right. Therefore, we 
can define a white rectangle covering the nose and black rectangles covering the neighboring 
areas. Of course the Viola-Jones system doesn't know exactly where the nose is, but by defining 
windows of varying size and seeking corresponding white and black rectangles, there is a 
chance of matching a nose. The actual Haar features are defined as the sum of brightness in a 
black rectangle and the sum of brightness in a neighboring rectangle. For a 24 x 24 window, we 
have more than 160 thousand features (roughly 24 to the fourth power).

https://en.wikipedia.org/wiki/Image_segmentation
https://en.wikipedia.org/wiki/Image_segmentation
https://en.wikipedia.org/wiki/Otsu's_method
https://en.wikipedia.org/wiki/Otsu's_method
https://en.wikipedia.org/wiki/Dilation_%28morphology%29
https://en.wikipedia.org/wiki/Dilation_%28morphology%29
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The training set consists of a huge collection of positive (with faces) images and negative 
(no faces) images. Only about 0.01% of the windows (in the order of 24 by 24 pixels) actually 
contain faces. The cascade of classifiers progressively filters out negative image areas stage 
by stage. In each progressive stage, the classifiers use progressively more features on less 
image windows. The idea is to spend the most time on image patches that contain faces. The 
original paper by Viola and Jones had 38 stages with 1, 10, 25, 25, and 50 features in the 
first five stages. On average, 10 features per image window were evaluated.

In OpenCV, you can train a cascade classifier yourself, as described in http://docs.
opencv.org/3.0.0/dc/d88/tutorial_traincascade.html (retrieved December 
2015). However, OpenCV has pre-trained classifiers for faces, eyes, and other features. The 
configuration for these classifiers is stored as XML files, which can be found in the folder where 
you installed OpenCV (on my machine, /usr/local/share/OpenCV/haarcascades/).

Getting ready
Follow the instructions in Setting up OpenCV.

How to do it...
1.	 The imports are as follows:

import cv2
from scipy.misc import lena
import matplotlib.pyplot as plt
import numpy as np
import dautil as dl
import os
from IPython.display import HTML

2.	 Define the following function to plot the image with a detected face (if detected):
def plot_with_rect(ax, img):
    img2 = img.copy()

    for x, y, w, h in face_cascade.detectMultiScale(img2, 1.3, 5):
        cv2.rectangle(img2, (x, y), (x + w, y + h), (255, 0, 0), 
2)

    dl.plotting.img_show(ax, img2, cmap=plt.cm.gray)

http://docs.opencv.org/3.0.0/dc/d88/tutorial_traincascade.html
http://docs.opencv.org/3.0.0/dc/d88/tutorial_traincascade.html
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3.	 Download the XML configuration file and create a classifier:
# dir = '/usr/local/share/OpenCV/haarcascades/'
base = 'https://raw.githubusercontent.com/Itseez/opencv/master/
data/'
url = base + 'haarcascades/haarcascade_frontalface_default.xml'
path = os.path.join(dl.data.get_data_dir(),
                    'haarcascade_frontalface_default.xml')

if not dl.conf.file_exists(path):
    dl.data.download(url, path)

face_cascade = cv2.CascadeClassifier(path)

4.	 Plot the original image with a detected face:
sp = dl.plotting.Subplotter(2, 2, context)
img = lena().astype(np.uint8)
plot_with_rect(sp.ax, img)
sp.label()

5.	 Plot the slightly rotated image (detection fails):
rows, cols = img.shape
mat = cv2.getRotationMatrix2D((cols/2, rows/2), 21, 1)
rot = cv2.warpAffine(img, mat, (cols, rows))
plot_with_rect(sp.next_ax(), rot)
sp.label()

6.	 Plot the image with noise added (detection fails):
np.random.seed(36)
noisy = img * (np.random.random(img.shape) < 0.6)
plot_with_rect(sp.next_ax(), noisy)
sp.label()

7.	 Plot the blurred image with a detected face:
blur = cv2.blur(img, (9, 9))
plot_with_rect(sp.next_ax(), blur)
sp.label()

HTML(sp.exit())
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Refer to the following screenshot for the end result:

The code is in the detecting_faces.ipynb file in this book's code bundle.

See also
ff The Wikipedia page about face detection at https://en.wikipedia.org/wiki/

Face_detection (retrieved December 2015)

ff The Wikipedia page about the Viola-Jones framework at https://en.wikipedia.
org/wiki/Viola%E2%80%93Jones_object_detection_framework (retrieved 
December 2015)

Searching for bright stars
Many stars are visible at night, even without using a telescope or any other optical device. 
Stars are, in general, larger than planet Earth, but in certain stages of their evolution, they 
can be smaller. Due to the large distance, they appear as tiny dots. Often, these dots consist 
of two (a binary system) or more stars. Not all stars emit visible light and not all starlight can 
reach us.

There are many approaches that we can take to find bright stars in a starry sky image. In this 
recipe, we will look for local maximums of brightness, which are also above a threshold. To 
determine brightness, we will convert the image to the HSV color space. In this color space, the 
three dimensions are hue, saturation, and value (brightness). The OpenCV split() function 
image values in a color space into the constituent values, for example, hue, saturation, and 
brightness. This is a relatively slow operation. To find maximums, we can apply the SciPy 
argrelmax() function.

https://en.wikipedia.org/wiki/Face_detection
https://en.wikipedia.org/wiki/Face_detection
https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework
https://en.wikipedia.org/wiki/Viola%E2%80%93Jones_object_detection_framework
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Getting ready
Follow the instructions in the Setting up OpenCV recipe.

How to do it...
1.	 The imports are as follows:

import dautil as dl
import os
import cv2
import matplotlib.pyplot as plt
from scipy.signal import argrelmax
import numpy as np
from IPython.display import HTML

2.	 Define the following function to scan the horizontal or vertical axis for local brightness 
peaks:
def scan_axis(v, axis):
    argmax = argrelmax(v, order=int(np.sqrt(v.shape[axis])),
                       axis=axis)

    return set([(i[0], i[1]) for i in np.column_stack(argmax)])

3.	 Download the image to analyze:
dir = dl.data.get_data_dir()
path = os.path.join(dir, 'night-927168_640.jpg')
base = 'https://pixabay.com/static/uploads/
photo/2015/09/06/10/19/'
url = base + 'night-927168_640.jpg'

if not dl.conf.file_exists(path):
    dl.data.download(url, path)
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4.	 Extract the brightness values from the image:
img = cv2.imread(path)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

h, s, v = cv2.split(hsv)

# Transform for normalization
v = v.astype(np.uint16) ** 2

5.	 Plot a histogram of the brightness values:
sp = dl.plotting.Subplotter(2, 2, context)
sp.ax.hist(v.ravel(), normed=True)
sp.label()

6.	 Plot a histogram of the brightness values for axis 0:
dl.plotting.hist_norm_pdf(sp.next_ax(), v.mean(axis=0))
sp.label()

7.	 Plot a histogram of the brightness values for axis 1:
dl.plotting.hist_norm_pdf(sp.next_ax(), v.mean(axis=1))
sp.label()

8.	 Plot the image with points we believe to contain bright stars:
points = scan_axis(v, 0).intersection(scan_axis(v, 1))

limit = np.percentile(np.unique(v.ravel()), 95)

kp = [cv2.KeyPoint(p[1], p[0], 1) for p in points
      if v[p[0], p[1]] > limit]
with_kp = cv2.drawKeypoints(img, kp, None, (255, 0, 0))

dl.plotting.img_show(sp.next_ax(), with_kp)
sp.label()

HTML(sp.exit())
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Refer to the following screenshot for the end result:

The code is in the searching_stars.ipynb file in this book's code bundle.

See also
ff The Wikipedia page about HSL and HSV at https://en.wikipedia.org/wiki/

HSL_and_HSV (retrieved December 2015)

ff The argrelmax() function documented at https://docs.scipy.org/doc/
scipy-0.16.0/reference/generated/scipy.signal.argrelmax.html 
(retrieved December 2015)

ff The split() function documented at http://docs.opencv.org/3.0-rc1/d2/
de8/group__core__array.html#ga0547c7fed86152d7e9d0096029c8518a 
(retrieved December 2015)

https://en.wikipedia.org/wiki/HSL_and_HSV
https://en.wikipedia.org/wiki/HSL_and_HSV
https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.signal.argrelmax.html
https://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.signal.argrelmax.html
http://docs.opencv.org/3.0-rc1/d2/de8/group__core__array.html#ga0547c7fed86152d7e9d0096029c8518a
http://docs.opencv.org/3.0-rc1/d2/de8/group__core__array.html#ga0547c7fed86152d7e9d0096029c8518a
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Extracting metadata from images
Digital photos often contain extra textual metadata, for example, timestamps, exposure 
information, and geolocations. Some of this metadata is editable by the camera owner. In  
the context of marketing, for instance, it can be useful to extract the metadata from profile  
(or other) images on social media websites. Purportedly, whistle blower Edward Snowden 
claimed that the American NSA is collecting EXIF metadata from global online data.

Getting ready
In this recipe, we will use ExifRead to extract the EXIF metadata.

Install ExifRead as follows:

$ pip install ExifRead

I tested the code with ExifRead 2.1.2.

How to do it...
1.	 The imports are as follows:

import exifread
import pprint

2.	 Open the image as follows:
f = open('covers.jpg', 'rb')

3.	 Print the tags and keys as follows:
# Return Exif tags
tags = exifread.process_file(f)
print(tags.keys())
pprint.pprint(tags)
f.close()

Refer to the following end result:

dict_keys(['EXIF Flash', 'Image Make', 'EXIF Contrast', 
'EXIF DateTimeOriginal', 'Image ResolutionUnit', 'EXIF 
ComponentsConfiguration', 'EXIF ISOSpeedRatings', 'Image 
ExifOffset', 'Image ImageDescription', 'EXIF MaxApertureValue', 
'EXIF ExposureBiasValue', 'Image YResolution', 'Image 
Orientation', 'EXIF DateTimeDigitized', 'EXIF MeteringMode', 
'EXIF Sharpness', 'EXIF WhiteBalance', 'EXIF ExposureTime', 
'Image Model', 'EXIF SceneCaptureType', 'Image Software', 'EXIF 
SceneType', 'EXIF SubjectDistanceRange', 'EXIF LightSource', 'EXIF 
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FocalLengthIn35mmFilm', 'Image XResolution', 'Image DateTime', 
'EXIF FileSource', 'EXIF ExposureProgram', 'EXIF FocalLength', 
'EXIF FNumber', 'EXIF Saturation', 'EXIF ExifImageWidth', 'EXIF 
ExposureMode', 'EXIF DigitalZoomRatio', 'EXIF FlashPixVersion', 
'EXIF ExifVersion', 'EXIF ColorSpace', 'EXIF CustomRendered', 'EXIF 
GainControl', 'EXIF CompressedBitsPerPixel', 'EXIF ExifImageLength'])
{'EXIF ColorSpace': (0xA001) Short=sRGB @ 406,
 'EXIF ComponentsConfiguration': (0x9101) Undefined=YCbCr @ 298,
 'EXIF CompressedBitsPerPixel': (0x9102) Ratio=2 @ 650,
 'EXIF Contrast': (0xA408) Short=Normal @ 550,
 'EXIF CustomRendered': (0xA401) Short=Normal @ 466,
 'EXIF DateTimeDigitized': (0x9004) ASCII=0000:00:00 00:00:00 @ 630,
 'EXIF DateTimeOriginal': (0x9003) ASCII=0000:00:00 00:00:00 @ 610,
 'EXIF DigitalZoomRatio': (0xA404) Ratio=0 @ 682,
 'EXIF ExifImageLength': (0xA003) Long=240 @ 430,
 'EXIF ExifImageWidth': (0xA002) Long=940 @ 418,
 'EXIF ExifVersion': (0x9000) Undefined=0220 @ 262,
 'EXIF ExposureBiasValue': (0x9204) Signed Ratio=0 @ 658,
 'EXIF ExposureMode': (0xA402) Short=Auto Exposure @ 478,
 'EXIF ExposureProgram': (0x8822) Short=Program Normal @ 238,
 'EXIF ExposureTime': (0x829A) Ratio=10/601 @ 594,
 'EXIF FNumber': (0x829D) Ratio=14/5 @ 602,
 'EXIF FileSource': (0xA300) Undefined=Digital Camera @ 442,
 'EXIF Flash': (0x9209) Short=Flash fired, auto mode @ 370,
 'EXIF FlashPixVersion': (0xA000) Undefined=0100 @ 394,
 'EXIF FocalLength': (0x920A) Ratio=39/5 @ 674,
 'EXIF FocalLengthIn35mmFilm': (0xA405) Short=38 @ 514,
 'EXIF GainControl': (0xA407) Short=None @ 538,
 'EXIF ISOSpeedRatings': (0x8827) Short=50 @ 250,
 'EXIF LightSource': (0x9208) Short=Unknown @ 358,
 'EXIF MaxApertureValue': (0x9205) Ratio=3 @ 666,
 'EXIF MeteringMode': (0x9207) Short=Pattern @ 346,
 'EXIF Saturation': (0xA409) Short=Normal @ 562,
 'EXIF SceneCaptureType': (0xA406) Short=Standard @ 526,
 'EXIF SceneType': (0xA301) Undefined=Directly Photographed @ 454,
 'EXIF Sharpness': (0xA40A) Short=Normal @ 574,
 'EXIF SubjectDistanceRange': (0xA40C) Short=0 @ 586,
 'EXIF WhiteBalance': (0xA403) Short=Auto @ 490,
 'Image DateTime': (0x0132) ASCII=0000:00:00 00:00:00 @ 184,
 'Image ExifOffset': (0x8769) Long=204 @ 126,
 'Image ImageDescription': (0x010E) ASCII=           @ 134,
 'Image Make': (0x010F) ASCII=NIKON @ 146,
 'Image Model': (0x0110) ASCII=E7900 @ 152,
 'Image Orientation': (0x0112) Short=Horizontal (normal) @ 54,
 'Image ResolutionUnit': (0x0128) Short=Pixels/Inch @ 90,
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 'Image Software': (0x0131) ASCII=E7900v1.1 @ 174,
 'Image XResolution': (0x011A) Ratio=300 @ 158,
 'Image YResolution': (0x011B) Ratio=300 @ 166}

The code is in the img_metadata.py file in this book's code bundle.

See also
ff The Wikipedia page about EXIF at https://en.wikipedia.org/wiki/

Exchangeable_image_file_format (retrieved December 2015)

ff The documentation for ExifRead at https://github.com/ianare/exif-py 
(retrieved December 2015)

Extracting texture features from images
Texture is the spatial and visual quality of an image. In this recipe, we will take a look at 
Haralick texture features. These features are based on the co-occurrence matrix (11.5) 
defined as follows:

In equation 11.5, i and j are intensities, while p and q are positions. The Haralick features are 
13 metrics derived from the co-occurrence matrix, some of them given in equation 11.6. For a 
more complete list, refer to http://murphylab.web.cmu.edu/publications/boland/
boland_node26.html (retrieved December 2015).

We will calculate the Haralick features with the mahotas API and apply them to the 
handwritten digits dataset of scikit-learn.

https://en.wikipedia.org/wiki/Exchangeable_image_file_format
https://en.wikipedia.org/wiki/Exchangeable_image_file_format
https://github.com/ianare/exif-py
http://murphylab.web.cmu.edu/publications/boland/boland_node26.html
http://murphylab.web.cmu.edu/publications/boland/boland_node26.html
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Getting ready
Install mahotas as follows:

$ pip install mahotas

I tested the code with mahotas 1.4.0.

How to do it...
1.	 The imports are as follows:

import mahotas as mh
import numpy as np
from sklearn.datasets import load_digits
import matplotlib.pyplot as plt
from tpot import TPOT
from sklearn.cross_validation import train_test_split
import dautil as dl

2.	 Load the scikit-learn digits data as follows:
digits = load_digits()
X = digits.data.copy()

3.	 Create Haralick features and add them:
for i, img in enumerate(digits.images):
    np.append(X[i], mh.features.haralick(
        img.astype(np.uint8)).ravel())

4.	 Fit and score a model with TPOT (or my fork, as discussed in Chapter 9, Ensemble 
Learning and Dimensionality Reduction):
X_train, X_test, y_train, y_test = train_test_split(
    X, digits.target, train_size=0.75)

tpot = TPOT(generations=6, population_size=101,
            random_state=46, verbosity=2)
tpot.fit(X_train, y_train)

print('Score {:.2f}'.format(tpot.score(X_train, y_train, X_test, 
y_test)))

5.	 Plot the first original image as follows:
dl.plotting.img_show(plt.gca(), digits.images[0])
plt.title('Original Image')
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6.	 Plot the core features for that image:
plt.figure()
dl.plotting.img_show(plt.gca(), digits.data[0].reshape((8, 8)))
plt.title('Core Features')

7.	 Plot the Haralick features for that image too:
plt.figure()
dl.plotting.img_show(plt.gca(), mh.features.haralick(
    digits.images[0].astype(np.uint8)))
plt.title('Haralick Features')

Refer to the following screenshot for the end result:

The code is in the extracting_texture.ipynb file in this book's code bundle.
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See also
ff The Wikipedia page about image texture at https://en.wikipedia.org/wiki/

Image_texture (retrieved December 2015)

ff The Wikipedia page about the co-occurrence matrix at https://en.wikipedia.
org/wiki/Co-occurrence_matrix (retrieved December 2015)

Applying hierarchical clustering on images
We encountered the concept of hierarchical clustering in Chapter 9, Ensemble Learning and 
Dimensionality Reduction. In this recipe, we will segment an image by hierarchically clustering 
it. We will apply agglomerative clustering O(n3), which is a type of hierarchical clustering.

In agglomerative clustering, each item is assigned its own cluster at initialization. Later, these 
clusters merge (agglomerate) and move up the hierarchy as needed. Obviously, we only merge 
clusters that are similar by some measure.

After initialization, we find the pair that are closest by some distance metric and merge them. 
The merged cluster is a higher-level cluster consisting of lower-level clusters. After that, we 
again find the closest pair and merge them, and so on. During this process, clusters can have 
any number of items. We stop clustering after we reach a certain number of clusters, or when 
the clusters are too far apart.

How to do it...
1.	 The imports are as follows:

import numpy as np
from scipy.misc import ascent
import matplotlib.pyplot as plt
from sklearn.feature_extraction.image import grid_to_graph
from sklearn.cluster import AgglomerativeClustering
import dautil as dl

2.	 Load an image and load it into an array:
img = ascent()
X = np.reshape(img, (-1, 1))

3.	 Cluster the image with the number of cluster set to 9 (a guess):
connectivity = grid_to_graph(*img.shape)
NCLUSTERS = 9
ac = AgglomerativeClustering(n_clusters=NCLUSTERS,
                             connectivity=connectivity)

https://en.wikipedia.org/wiki/Image_texture
https://en.wikipedia.org/wiki/Image_texture
https://en.wikipedia.org/wiki/Co-occurrence_matrix
https://en.wikipedia.org/wiki/Co-occurrence_matrix
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ac.fit(X)
label = np.reshape(ac.labels_, img.shape)

4.	 Plot the image with cluster segments superimposed:
for l in range(NCLUSTERS):
    plt.contour(label == l, contours=1,
                colors=[plt.cm.spectral(l/float(NCLUSTERS)), ])

dl.plotting.img_show(plt.gca(), img, cmap=plt.cm.gray)

Refer to the following screenshot for the end result:

The code is in the clustering_hierarchy.ipynb file in this book's code bundle.

See also
ff The AgglomerativeClustering class documented at http://scikit-

learn.org/stable/modules/generated/sklearn.cluster.
AgglomerativeClustering.html (retrieved December 2015)

ff The Wikipedia page about hierarchical clustering at https://en.wikipedia.
org/wiki/Hierarchical_clustering (retrieved December 2015)

Segmenting images with spectral clustering
Spectral clustering is a clustering technique that can be used to segment images. The scikit-
learn spectral_clustering() function implements the normalized graph cuts spectral 
clustering algorithm. This algorithm represents an image as a graph of units. "Graph" here is 
the same mathematical concept as in Chapter 8, Text Mining and Social Network Analysis. 
The algorithm tries to partition the image, while minimizing segment size and the ratio of 
intensity gradient along cuts.

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/Hierarchical_clustering
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How to do it...
1.	 The imports are as follows:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.feature_extraction.image import img_to_graph
from sklearn.cluster import spectral_clustering
from sklearn.datasets import load_digits

2.	 Load the digits data set as follows:
digits = load_digits()
img = digits.images[0].astype(float)
mask = img.astype(bool)

3.	 Create a graph from the image:
graph = img_to_graph(img, mask=mask)
graph.data = np.exp(-graph.data/graph.data.std())

4.	 Apply spectral clustering to get three clusters:
labels = spectral_clustering(graph, n_clusters=3)
label_im = -np.ones(mask.shape)
label_im[mask] = labels

5.	 Plot the original image as follows:
plt.matshow(img, False)
plt.gca().axis('off')
plt.title('Original')

6.	 Plot the image with the three clusters as follows:
plt.figure()
plt.matshow(label_im, False)
plt.gca().axis('off')
plt.title('Clustered')
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Refer to the following screenshot for the end result:

The code is in the clustering_spectral.ipynb file in this book's code bundle.

See also
ff The Wikipedia page about spectral clustering at https://en.wikipedia.org/

wiki/Spectral_clustering (retrieved December 2015)

ff The spectral_clustering() function documented at http://scikit-
learn.org/stable/modules/generated/sklearn.cluster.spectral_
clustering.html (retrieved December 2015)

https://en.wikipedia.org/wiki/Spectral_clustering
https://en.wikipedia.org/wiki/Spectral_clustering
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.spectral_clustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.spectral_clustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.spectral_clustering.html
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12
Parallelism and 

Performance

In this chapter, we will cover the following recipes:

ff Just-in-time compiling with Numba

ff Speeding up numerical expressions with Numexpr

ff Running multiple threads with the threading module

ff Launching multiple tasks with the concurrent.futures module

ff Accessing resources asynchronously with the asyncio module

ff Distributed processing with execnet

ff Profiling memory usage

ff Calculating the mean, variance, skewness, and kurtosis on the fly

ff Caching with a least recently used cache

ff Caching HTTP requests

ff Streaming counting with the Count-min sketch

ff Harnessing the power of the GPU with OpenCL

Introduction
The ENIAC, built between 1943 and 1946, filled a large room with eighteen thousand tubes 
and had a 20-bit memory. We have come a long way since then. The growth has been 
exponential as also predicted by Moore's law. Whether we are dealing with a self-fulfilling 
prophecy or a fundamental phenomenon is, of course, hard to say. Purportedly, the growth  
is starting to decelerate.
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Given our current knowledge of technology, thermodynamics, and quantum mechanics, we 
can set hard limits for Moore's law. However, our assumptions may be wrong; for instance, 
scientists and engineers may come up with fundamentally better techniques to build chips. 
(One such development is quantum computing, which is currently far from widespread.) The 
biggest hurdle is heat dissipation, which is commonly measured in units of kT, with k the 
Boltzmann constant (about 10-23 J/K) and T in Kelvin (freezing point is 273.15 K). The heat 
dissipation per bit for a chip is at least kT (10-20 J at 350 K). Semi-conductors in the 1990s 
consumed at least a hundred thousand kT. A computational system undergoes changes in 
energy levels during operation. The smallest tolerable difference in energy is roughly 100 kT. 
Even if we somehow manage to avoid this limit, we will soon be operating close to atomic 
levels, which for quantum mechanical reasons is not practical (information about particles 
is fundamentally limited), unless we are talking about a quantum computer. Currently, the 
consensus is that we will reach the limit within decades. Another consideration is the complex 
wiring of chips. Complex wiring lowers the life expectancy of chips considerably.

This chapter is about software performance; however, there are other more important 
software aspects, such as maintainability, robustness, and usability. Betting on Moore's law 
is risky and not practical, since we have other possibilities to improve performance. The first 
option is to do the work in parallel as much as possible using multiple machines, cores on 
a single machine, GPUs, or other specialized hardware such as FPGAs. For instance, I am 
testing the code on an eight-core machine. As a student, I was lucky enough to get involved in 
a project with the goal of creating a grid. The grid was supposed to bring together university 
computers into a single computational environment. In a later phase, there were plans to 
connect other computers too, a bit like the SETI project. (As you know, many office computers 
are idle during weekends and at night, so why not make them work too?)

Currently, of course, there are various commercial cloud systems, such as those provided by 
Amazon and Google. I will not discuss those because I feel that these are more specialized 
topics, although I did cover some Python-specific cloud systems in Python Data Analysis.

The second method to improve performance is to apply caching, thereby avoiding 
unnecessary function calls. I covered the joblib library, which has a caching feature, in 
Chapter 9, Ensemble Learning and Dimensionality Reduction. Python 3 has brought us  
new features for parallelism and caching.

The third method is getting close to the metal. As you know, Python is a high-level 
programming language with a virtual machine and interpreter. Python has an extra layer, 
which a language unlike what C has. When I was a student, we were taught that C is a high-
level language, with assembler and machine code as the lower levels. As far as I know, these 
days, practically nobody codes in assembler. Via Cython (covered in Python Data Analysis) 
and similar software, we can compile our code to obtain performance on a par with C and 
C++. Compiling is a hassle and is problematic because it reduces portability due to platform 
dependence. A common solution is to automate compiling with shell scripts and make files. 
Numba and other similar projects make life even easier with just-in-time compiling, although 
with some limitations.
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Just-in-time compiling with Numba
The Numba software performs just-in-time compiling using special function decorators. The 
compilation produces native machine code automatically. The generated code can run on 
CPUs and GPUs. The main use case for Numba is math-heavy code that uses NumPy arrays.

We can compile the code with the @numba.jit decorator with optional function signature 
(for instance, int32(int32)). The types correspond with similar NumPy types. Numba 
operates in the nopython and object modes. The nopython mode is faster but more 
restricted. We can also release the Global Interpreter Lock (GIL) with the nogil option.  
You can cache the compilation results by requesting a file cache with the cache argument.

The @vectorize decorator converts functions with scalar arguments into NumPy ufuncs. 
Vectorization gives extra advantages, such as automatic broadcasting, and can be used  
on a single core, multiple cores in parallel, or a GPU.

Getting ready
Install Numba with the following command:

$ pip/conda install numba

I tested the code with Numba 0.22.1.

How to do it...
1.	 The imports are as follows:

from numba import vectorize
from numba import jit
import numpy as np

2.	 Define the following function to use the @vectorize decorator:
@vectorize
def vectorize_version(x, y, z):
    return x ** 2 + y ** 2 + z ** 2

3.	 Define the following function to use the @jit decorator:
@jit(nopython=True)
def jit_version(x, y, z):
    return x ** 2 + y ** 2 + z ** 2
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4.	 Define some random arrays as follows:
np.random.seed(36)
x = np.random.random(1000)
y = np.random.random(1000)
z = np.random.random(1000)

5.	 Measure the time it takes to sum the squares of the arrays:
%timeit x ** 2 + y ** 2 + z ** 2
%timeit vectorize_version(x, y, z)
%timeit jit_version(x, y, z)
jit_version.inspect_types()

Refer to the following screenshot for the end result:

The code is in the compiling_numba.ipynb file in this book's code bundle.

How it works
The best time measured is 1.82 microseconds on my machine, which is significantly faster 
than the measured time for normal Python code. At the end of the screenshot, we see the 
result of the compilation, with the last part omitted because it is too long and difficult to read. 
We get warnings, which are most likely caused by CPU caching. I left them on purpose, but you 
may be able to get rid of them using much larger arrays that don't fit in the cache.
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See also
ff The Numba website at http://numba.pydata.org/ (retrieved January 2016)

Speeding up numerical expressions with 
Numexpr

Numexpr is a software package for the evaluation of numerical array expressions, which is 
also installed when you install pandas, and you may have seen it announced in the watermark 
of other recipes (tested with Numexpr 2.3.1). Numexpr tries to speed up calculations by 
avoiding the creation of temporary variables because reading the variables can be a potential 
bottleneck. The largest speedups are expected for arrays that can't fit in the CPU cache.

Numexpr splits large arrays into chunks, which fit in the cache, and it also uses multiple cores 
in parallel when possible. It has an evaluate() function, which accepts simple expressions 
and evaluates them (refer to the documentation for the complete list of supported features).

How to do it...
1.	 The imports are as follows:

import numexpr as ne
import numpy as np

2.	 Generate random arrays, which should be too large to hold in a cache:
a = np.random.rand(1e6)
b = np.random.rand(1e6)

3.	 Evaluate a simple arithmetic expression and measure execution time:
%timeit 2 * a ** 3 + 3 * b ** 9
%timeit ne.evaluate("2 * a ** 3 +3 * b ** 9 ")

Refer to the following screenshot for the end result:

The code is in the speeding_numexpr.ipynb file in this book's code bundle.

http://numba.pydata.org/
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How it works
We generated random data that should not fit in a cache to avoid caching effects and because 
that is the best use case for Numexpr. The size of the cache differs from one machine to 
another, so if necessary use a larger or smaller size for the arrays. In the example, we put a 
string containing a simple arithmetic expression, although we could have used a slightly more 
complex expression. For more details, refer to the documentation. I tested the code with a 
machine that has eight cores. The speedup is larger than a factor of eight, so it's clearly  
due to Numexpr.

See also
ff The Numexpr website at https://pypi.python.org/pypi/numexpr (retrieved 

January 2016)

Running multiple threads with the threading 
module

A computer process is an instance of a running program. Processes are actually heavyweight, 
so we may prefer threads, which are lighter. In fact, threads are often just subunits of a 
process. Processes are separated from each other, while threads can share instructions  
and data.

Operating systems typically assign one thread to each core (if there are more than one), 
or switch between threads periodically; this is called time slicing. Threads as processes 
can have different priorities and the operating system has daemon threads running in the 
background with very low priority.

It's easier to switch between threads than between processes; however, because threads 
share information, they are more dangerous to use. For instance, if multiple threads are 
able to increment a counter at the same time, this will make the code nondeterministic and 
potentially incorrect. One way to minimize risks is to make sure that only one thread can 
access a shared variable or shared function at a time. This strategy is implemented in  
Python as the GIL.

How to do it...
1.	 The imports are as follows:

import dautil as dl
import ch12util
from functools import partial
from queue import Queue

https://pypi.python.org/pypi/numexpr
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from threading import Thread
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import skew
from IPython.display import HTML

STATS = []

2.	 Define the following function to resample:
def resample(arr):
    sample = ch12util.bootstrap(arr)
    STATS.append((sample.mean(), sample.std(), skew(sample)))

3.	 Define the following class to bootstrap:
class Bootstrapper(Thread):
    def __init__(self, queue, data):
        Thread.__init__(self)
        self.queue = queue
        self.data = data
        self.log = dl.log_api.conf_logger(__name__)

    def run(self):
        while True:
            index = self.queue.get()

            if index % 10 == 0:
                self.log.debug('Bootstrap {}'.format(
                    index))

            resample(self.data)
            self.queue.task_done()

4.	 Define the following function to perform serial resampling:
def serial(arr, n):
    for i in range(n):
        resample(arr)
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5.	 Define the following function to perform parallel resampling:
def threaded(arr, n):
    queue = Queue()

    for x in range(8):
        worker = Bootstrapper(queue, arr)
        worker.daemon = True
        worker.start()

    for i in range(n):
        queue.put(i)

    queue.join()

6.	 Plot distributions of moments and execution times:
sp = dl.plotting.Subplotter(2, 2, context)
temp = dl.data.Weather.load()['TEMP'].dropna().values
np.random.seed(26)
threaded_times = ch12util.time_many(partial(threaded, temp))
serial_times = ch12util.time_many(partial(serial, temp))

ch12util.plot_times(sp.ax, serial_times, threaded_times)

stats_arr = np.array(STATS)
ch12util.plot_distro(sp.next_ax(), stats_arr.T[0], temp.mean())
sp.label()

ch12util.plot_distro(sp.next_ax(), stats_arr.T[1], temp.std())
sp.label()

ch12util.plot_distro(sp.next_ax(), stats_arr.T[2], skew(temp))
sp.label()

HTML(sp.exit())
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Refer to the following screenshot for the end result:

The code is in the running_threads.ipynb file in this book's code bundle.

See also
ff The documentation for Python threading at https://docs.python.org/3/

library/threading.html (retrieved January 2016)

https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
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Launching multiple tasks with the 
concurrent.futures module

The concurrent.futures module is a Python module with which we can execute callables 
asynchronously. If you are familiar with Java and go through the module, you will notice some 
similarities with the equivalent Java API, such as class names and architecture. According to 
the Python documentation, this is not a coincidence.

A task in this context is an autonomous unit of work. For instance, printing a document can be 
considered a task, but usually we consider much smaller tasks, such as adding two numbers.

How to do it...
1.	 The imports are as follows:

import dautil as dl
import ch12util
from functools import partial
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import skew
import concurrent.futures
from IPython.display import HTML

STATS = []

2.	 Define the following function to resample:
def resample(arr):
    sample = ch12util.bootstrap(arr)
    STATS.append((sample.mean(), sample.std(), skew(sample)))

3.	 Define the following class to bootstrap:
class Bootstrapper():
    def __init__(self, data):
        self.data = data
        self.log = dl.log_api.conf_logger(__name__)

    def run(self, index):
        if index % 10 == 0:
            self.log.debug('Bootstrap {}'.format(
                index))

        resample(self.data)
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4.	 Define the following function to perform serial resampling:
def serial(arr, n):
    for i in range(n):
        resample(arr)

5.	 Define the following function to perform parallel resampling:
def parallel(arr, n):
    executor = concurrent.futures.ThreadPoolExecutor(max_
workers=8)
    bootstrapper = Bootstrapper(arr)

    for x in executor.map(bootstrapper.run, range(n)):
        pass

    executor.shutdown()

6.	 Plot distributions of moments and execution times:
rain = dl.data.Weather.load()['RAIN'].dropna().values
np.random.seed(33)
parallel_times = ch12util.time_many(partial(parallel, rain))
serial_times = ch12util.time_many(partial(serial, rain))
 
sp = dl.plotting.Subplotter(2, 2, context)
ch12util.plot_times(sp.ax, serial_times, parallel_times)

STATS = np.array(STATS)
ch12util.plot_distro(sp.next_ax(), STATS.T[0], rain.mean())
sp.label()

ch12util.plot_distro(sp.next_ax(), STATS.T[1], rain.std())
sp.label()

ch12util.plot_distro(sp.next_ax(), STATS.T[2], skew(rain))
sp.label()
HTML(sp.exit())
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Refer to the following screenshot for the end result:

The code is in the launching_futures.ipynb file in this book's code bundle.

See also
ff The documentation for the concurrent.futures module at https://docs.

python.org/3/library/concurrent.futures.html (retrieved January 2016)

https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/concurrent.futures.html


Chapter 12

377

Accessing resources asynchronously with 
the asyncio module

It is a basic fact of life that I/O (for example, file or database access) is slow. I/O is not only 
slow, but also unpredictable. In a common scenario, we wait for data (from a web service or 
sensors) and write the data to the filesystem or a database. In such a situation, we can find 
ourselves to be I/O bound—spending more time waiting for the data than actually processing 
it. We can poll for data periodically or act on event triggers (either check your watch or set an 
alarm). GUIs usually have special threads that wait for user input in an infinite loop.

The Python asyncio module for asynchronous I/O uses the concept of coroutines with a 
related function decorator. A brief example of this module was also given in the Scraping the 
web recipe of Chapter 5, Web Mining, Databases, and Big Data. Subroutines can be thought 
of as a special case of coroutines. A subroutine has a start and exit point, either through 
an early exit with a return statement or by reaching the end of the subroutine definition. In 
contrast, a coroutine can yield with the yield from statement by calling another coroutine 
and then resuming execution from that exit point. The coroutine is letting another coroutine 
take over, as it were, and is going back to sleep until it is activated again.

Subroutines can be placed on a single stack. However, coroutines require multiple stacks, 
which makes understanding the code and potential exceptions more complex.

How to do it...
The code is in the accessing_asyncio.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import dautil as dl
import ch12util
from functools import partial
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import skew
import asyncio
import time
from IPython.display import HTML

STATS = []



Parallelism and Performance

378

2.	 Define the following function to resample:
def resample(arr):
    sample = ch12util.bootstrap(arr)
    STATS.append((sample.mean(), sample.std(), skew(sample)))

3.	 Define the following class to bootstrap:
class Bootstrapper():
    def __init__(self, data, queue):
        self.data = data
        self.log = dl.log_api.conf_logger(__name__)
        self.queue = queue

    @asyncio.coroutine
    def run(self):
        while not self.queue.empty():
            index = yield from self.queue.get()

            if index % 10 == 0:
                self.log.debug('Bootstrap {}'.format(
                    index))

            resample(self.data)
            # simulates slow IO
            yield from asyncio.sleep(0.01)

4.	 Define the following function to perform serial resampling:
def serial(arr, n):
    for i in range(n):
        resample(arr)
        # simulates slow IO
        time.sleep(0.01)

5.	 Define the following function to perform parallel resampling:
def parallel(arr, n):
    q = asyncio.Queue()

    for i in range(n):
        q.put_nowait(i)

    bootstrapper = Bootstrapper(arr, q)
    policy = asyncio.get_event_loop_policy()
    policy.set_event_loop(policy.new_event_loop())
    loop = asyncio.get_event_loop()
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    tasks = [asyncio.async(bootstrapper.run())
             for i in range(n)]

    loop.run_until_complete(asyncio.wait(tasks))
    loop.close()

6.	 Plot distributions of moments and execution times: 
pressure = dl.data.Weather.load()['PRESSURE'].dropna().values
np.random.seed(33)
parallel_times = ch12util.time_many(partial(parallel, pressure))
serial_times = ch12util.time_many(partial(serial, pressure))

dl.options.mimic_seaborn()
ch12util.plot_times(plt.gca(), serial_times, parallel_times)

sp = dl.plotting.Subplotter(2, 2, context)
ch12util.plot_times(sp.ax, serial_times, parallel_times)

STATS = np.array(STATS)
ch12util.plot_distro(sp.next_ax(), STATS.T[0], pressure.mean())
sp.label()

ch12util.plot_distro(sp.next_ax(), STATS.T[1], pressure.std())
sp.label()

ch12util.plot_distro(sp.next_ax(), STATS.T[2], skew(pressure))
sp.label()
HTML(sp.exit())
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Refer to the following screenshot for the end result:

See also
ff The documentation for the asyncio module at https://docs.python.org/3/

library/asyncio.html (retrieved January 2016)

ff The related Wikipedia page at https://en.wikipedia.org/wiki/Coroutine 
(retrieved January 2016)

Distributed processing with execnet
The execnet module has a share-nothing model and uses channels for communication. 
Channels in this context are software abstractions used to send and receive messages 
between (distributed) computer processes. execnet is most useful for combining 
heterogeneous computing environments with different Python interpreters and installed 
software. The environments can have different operating systems and Python implementations 
(CPython, Jython, PyPy, or others).

https://docs.python.org/3/library/asyncio.html
https://docs.python.org/3/library/asyncio.html
https://en.wikipedia.org/wiki/Coroutine
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In the shared nothing architecture, computing nodes don't share memory or files. The 
architecture is therefore totally decentralized with completely independent nodes. The  
obvious advantage is that we are not dependent on any one node.

Getting ready
Install execnet with the following command:

$ pip/conda install execnet 

I tested the code with execnet 1.3.0.

How to do it...
1.	 The imports are as follows:

import dautil as dl
import ch12util
from functools import partial
import matplotlib.pyplot as plt
import numpy as np
import execnet

STATS = []

2.	 Define the following helper function:
def run(channel, data=[]):
    while not channel.isclosed():
        index = channel.receive()

        if index % 10 == 0:
            print('Bootstrap {}'.format(
                index))

        total = 0

        for x in data:
            total += x

        channel.send((total - data[index])/(len(data) - 1))
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3.	 Define the following function to perform serial resampling:
def serial(arr, n):
    for i in range(n):
        total = 0

        for x in arr:
            total += x

        STATS.append((total - arr[i])/(len(arr) - 1))

4.	 Define the following function to perform parallel resampling:
def parallel(arr, n):
    gw = execnet.makegateway()
    channel = gw.remote_exec(run, data=arr.tolist())

    for i in range(n):
        channel.send(i)
        STATS.append(channel.receive())

    gw.exit()

5.	 Plot distributions of means and execution times:
ws = dl.data.Weather.load()['WIND_SPEED'].dropna().values
np.random.seed(33)
parallel_times = ch12util.time_many(partial(parallel, ws))
serial_times = ch12util.time_many(partial(serial, ws))

%matplotlib inline
dl.options.mimic_seaborn()
ch12util.plot_times(plt.gca(), serial_times, parallel_times)
plt.legend(loc='best')

plt.figure()
STATS = np.array(STATS)
ch12util.plot_distro(plt.gca(), STATS, ws.mean())
plt.title('Distribution of the Means')
plt.legend(loc='best')
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Refer to the following screenshot for the end result:

The code is in the distributing_execnet.ipynb file in this book's code bundle.

See also
ff The execnet website at http://codespeak.net/execnet/ (retrieved January 

2016)

ff The related Wikipedia page at https://en.wikipedia.org/wiki/Shared_
nothing_architecture (retrieved January 2016)

http://codespeak.net/execnet/
https://en.wikipedia.org/wiki/Shared_nothing_architecture
https://en.wikipedia.org/wiki/Shared_nothing_architecture
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Profiling memory usage
In Python Data Analysis, we used various profiling tools. These tools mostly had to do with 
measuring execution times. However, memory is also important, especially if we don't have 
enough of it. Memory leaks are a common issue with computer programs that we can find by 
performing memory profiling. Leaks occur when we don't release memory that is not needed. 
Problems also may occur when we use data types that require more memory than we need, 
for instance, NumPy float64 arrays when integer arrays will do.

The Python memory_profiler module can profile memory usage of code line by line. 
Once you install it, you can also use the module in an IPython notebook via various magic 
commands. The module works by communicating with the operating system. On Windows,  
you will require the Python psutil package for communication.

Getting ready
Install memory_profiler with the following command:

$ pip install memory-profiler 

I tested the code with memory_profiler 0.39.

Create a script to profile (refer to the mem_test.py file in this book's code bundle):

import numpy as np

def test_me():
    a = np.random.random((999, 99))
    b = np.random.random((99, 99))
    a.ravel()
    b.tolist()

How to do it...
1.	 The imports are as follows:

import dautil as dl
from mem_test import test_me

2.	 Load the IPython extension as follows:
%load_ext memory_profiler

3.	 Profile the test script line-by-line with the following command:
%mprun -f test_me test_me()
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Refer to the following screenshot for the end result:

The code is in the profiling_memory.ipynb file in this book's code bundle.

See also
ff The memory_profiler website at https://pypi.python.org/pypi/memory_

profiler (retrieved January 2016)

Calculating the mean, variance, skewness, 
and kurtosis on the fly

Mean, variance, skewness, and kurtosis are important quantities in statistics. Some of the 
calculations involve sums of squares, which for large values may lead to overflow. To avoid 
loss of precision, we have to realize that variance is invariant under shift by a certain  
constant number.

When we have enough space in memory, we can directly calculate the moments, taking into 
account numerical issues if necessary. However, we may want to not keep the data in memory 
because there is a lot of it, or because it is more convenient to calculate the moments on  
the fly.

An online and numerically stable algorithm to calculate the variance has been provided 
by Terriberry (Terriberry, Timothy B. (2007), Computing Higher-Order Moments Online). We 
will compare this algorithm, although it is not the best one, to the implementation in the 
LiveStats module. If you are interested in improved algorithms, take a look at the Wikipedia 
page listed in the See also section.

https://pypi.python.org/pypi/memory_profiler
https://pypi.python.org/pypi/memory_profiler
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Take a look at the following equations:
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Skewness is given by 12.6 and kurtosis is given by 12.7.

Getting ready
Install LiveStats with the following command:

$ pip install LiveStats 

I tested the code with LiveStats 1.0.

How to do it...
1.	 The imports are as follows:

from livestats import livestats
from math import sqrt
import dautil as dl
import numpy as np
from scipy.stats import skew
from scipy.stats import kurtosis
import matplotlib.pyplot as plt
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2.	 Define the following function to implement the equations for the moments 
calculation:
# From https://en.wikipedia.org/wiki/
# Algorithms_for_calculating_variance
def online_kurtosis(data):
    n = 0
    mean = 0
    M2 = 0
    M3 = 0
    M4 = 0
    stats = []

    for x in data:
        n1 = n
        n = n + 1
        delta = x - mean
        delta_n = delta / n
        delta_n2 = delta_n ** 2
        term1 = delta * delta_n * n1
        mean = mean + delta_n
        M4 = M4 + term1 * delta_n2 * (n**2 - 3*n + 3) + \
            6 * delta_n2 * M2 - 4 * delta_n * M3
        M3 = M3 + term1 * delta_n * (n - 2) - 3 * delta_n * M2
        M2 = M2 + term1
        s = sqrt(n) * M3 / sqrt(M2 ** 3)
        k = (n*M4) / (M2**2) - 3
        stats.append((mean, sqrt(M2/(n - 1)), s, k))

    return np.array(stats)

3.	 Initialize and load data as follows:
test = livestats.LiveStats([0.25, 0.5, 0.75])

data = dl.data.Weather.load()['TEMP'].\
    resample('M').dropna().values

4.	 Calculate the various statistics with LiveStats, the algorithm mentioned in the 
previous section, and compare with the results when we apply NumPy functions  
to all the data at once:
ls = []
truth = []

test.add(data[0])
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for i in range(1, len(data)):
    test.add(data[i])
    q1, q2, q3 = test.quantiles()

    ls.append((test.mean(), sqrt(test.variance()),
              test.skewness(), test.kurtosis(), q1[1], q2[1], 
q3[1]))
    slice = data[:i]
    truth.append((slice.mean(), slice.std(),
                  skew(slice), kurtosis(slice),
                  np.percentile(slice, 25), np.median(slice),
                  np.percentile(slice, 75)))

ls = np.array(ls)
truth = np.array(truth)
ok = online_kurtosis(data)

5.	 Plot the results as follows:

dl.options.mimic_seaborn()
cp = dl.plotting.CyclePlotter(plt.gca())
cp.plot(ls.T[0], label='LiveStats')
cp.plot(truth.T[0], label='Truth')
cp.plot(data)
plt.title('Live Stats Means')
plt.xlabel('# points')
plt.ylabel('Mean')
plt.legend(loc='best')

plt.figure()

mses = [dl.stats.mse(truth.T[i], ls.T[i])
        for i in range(7)]
mses.extend([dl.stats.mse(truth.T[i], ok[1:].T[i])
             for i in range(4)])
dl.plotting.bar(plt.gca(),
                ['mean', 'std', 'skew', 'kurt',
                 'q1', 'q2', 'q3',
                 'my_mean', 'my_std', 'my_skew', 'my_kurt'], mses)
plt.title('MSEs for Various Statistics')
plt.ylabel('MSE')



Chapter 12

389

Refer to the following screenshot for the end result:

The code is in the calculating_moments.ipynb file in this book's code bundle.
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See also
ff The LiveStats website at https://bitbucket.org/scassidy/livestats 

(retrieved January 2016)

ff The related Wikipedia page at https://en.wikipedia.org/wiki/
Algorithms_for_calculating_variance (retrieved January 2016)

Caching with a least recently used cache
Caching involves storing results, usually from a function call, in memory or on disk. If done 
correctly, caching helps by reducing the number of function calls. In general, we want to keep 
the cache small for space reasons. If we are able to find items in cache, we talk about hits; 
otherwise, we have misses. Obviously, we want to have as many hits as possible and as few 
misses as possible. This means that we want to maximize the hits-misses ratio.

Many caching algorithms exist, of which we will cover the least recently used (LRU) algorithm. 
This algorithm keeps track of when a cache item was used. If the cache is about to exceed its 
maximum specified size, LRU gets rid of the least recently used item. The reasoning is that 
these items are possibly older and, therefore, not as relevant any more. There are several 
variations of LRU. Other algorithms do the opposite—removing the most recent item, the least 
frequently used item, or a random item.

The standard Python library has an implementation of LRU, but there is also a specialized 
Python library with some parts implemented in C and it is therefore potentially faster. We 
will compare the two implementations using the NLTK lemmatize() method (refer to the 
Stemming, lemmatizing, filtering and TF-IDF scores recipe in Chapter 8, Text Mining and 
Social Network Analysis).

Getting ready
Install fastcache as follows:

$ pip/conda install fastcache

I tested the code with fastcache 1.0.2.

How to do it...
1.	 The imports are as follows:

from fastcache import clru_cache
from functools import lru_cache
from nltk.corpus import brown
from nltk.stem import WordNetLemmatizer

https://bitbucket.org/scassidy/livestats
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
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import dautil as dl
import numpy as np
from IPython.display import HTML

2.	 Define the following function to cache:
def lemmatize(word, lemmatizer):
    return lemmatizer.lemmatize(word.lower())

3.	 Define the following function to measure the effects of caching:
def measure(impl, words, lemmatizer):
    cache = dl.perf.LRUCache(impl, lemmatize)
    times = []
    hm = []

    for i in range(5, 12):
        cache.maxsize = 2 ** i
        cache.cache()
        with dl.perf.StopWatch() as sw:
            _ = [cache.cached(w, lemmatizer) for w in words]

        hm.append(cache.hits_miss())
        times.append(sw.elapsed)
        cache.clear()
        
    return (times, hm)

4.	 Initialize a list of words and an NLTK WordNetLemmatizer object:
words = [w for w in brown.words()]
lemmatizer = WordNetLemmatizer()

5.	 Measure the execution time as follows:
with dl.perf.StopWatch() as sw:
    _ = [lemmatizer.lemmatize(w.lower()) for w in words]
    
plain = sw.elapsed

times, hm = measure(clru_cache, words, lemmatizer)

6.	 Plot the results for different cache sizes:
sp = dl.plotting.Subplotter(2, 2, context)
sp.ax.plot(2 ** np.arange(5, 12), times)
sp.ax.axhline(plain, lw=2, label='Uncached')
sp.label()
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sp.next_ax().plot(2 ** np.arange(5, 12), hm)
sp.label()

times, hm = measure(lru_cache, words, lemmatizer)
sp.next_ax().plot(2 ** np.arange(5, 12), times)
sp.ax.axhline(plain, lw=2, label='Uncached')
sp.label()

sp.next_ax().plot(2 ** np.arange(5, 12), hm)
sp.label()
HTML(sp.exit())

Refer to the following screenshot for the end result:

The code is in the caching_lru.ipynb file in this book's code bundle.
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See also
ff The related Wikipedia page at http://en.wikipedia.org/wiki/Cache_

algorithms (retrieved January 2016)

ff The fastcache website at https://pypi.python.org/pypi/fastcache 
(retrieved January 2016)

ff The functools.lru_cache documentation at https://docs.python.org/3/
library/functools.html#functools.lru_cache (retrieved January 2016)

Caching HTTP requests
Sometimes data is made available via a web service over HTTP. The advantage is that we 
don't have to care that much about the technologies that the sending party is using. This 
is comparable to the way e-mail, for instance, works. However, we have to explicitly request 
information via an HTTP GET (often) or HTTP POST (uppercase by convention) method. 
Whenever we request a web page or download a file, we usually perform a GET request. The 
web server on the other side has to process the request. If there are many requests, we can 
potentially slow down the server, so organizations often take measures to prevent this. It may 
mean that further requests from you will be blocked.

Avoiding issuing the same request multiple times is advantageous for efficiency reasons too. 
Web browsers solve this with a cache, and we can do the same with the requests-cache 
package. The cache is stored in a SQLite database by default.

A common use case that we will not cover is that of periodically retrieving information with 
HTTP. Obviously, we don't want to retrieve content if nothing has changed. The HTTP protocol 
provides efficient mechanisms to determine whether content was modified. A web server, 
however, is not required to report content changes.

Getting ready
Install requests-cache with the following command:

$ pip install --upgrade requests-cache 

I tested the code with requests-cache 0.4.10.

http://en.wikipedia.org/wiki/Cache_algorithms
http://en.wikipedia.org/wiki/Cache_algorithms
https://pypi.python.org/pypi/fastcache
https://docs.python.org/3/library/functools.html#functools.lru_cache
https://docs.python.org/3/library/functools.html#functools.lru_cache
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How to do it...
1.	 The imports are as follows:

import requests
import requests_cache

2.	 Install the cache (this creates a SQLite database by default):
requests_cache.install_cache()

3.	 Request a website that builds the cache:
%time requests.get('http://google.com')

4.	 Request the same website that should now come from the local cache:
%time requests.get('http://google.com')

5.	 Clear the cache as follows:
requests_cache.clear()

6.	 Request the website yet again (the cache should be empty now):
%time requests.get('http://google.com')

Refer to the following screenshot for the end result:

The code is in the caching_requests.ipynb file in this book's code bundle.

See also
ff The related Wikipedia page at https://en.wikipedia.org/wiki/HTTP_ETag 

(retrieved January 2016)

ff The requests-cache website at https://pypi.python.org/pypi/requests-
cache (retrieved January 2016)

https://en.wikipedia.org/wiki/HTTP_ETag
https://pypi.python.org/pypi/requests-cache
https://pypi.python.org/pypi/requests-cache
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Streaming counting with the Count-min 
sketch

Streaming or online algorithms are useful as they don't require as much memory and 
processing power as other algorithms. This chapter has a recipe involving the calculation of 
statistical moments online (refer to Calculating the mean, variance, skewness, and kurtosis  
on the fly).

Also, in the Clustering streaming data with Spark recipe of Chapter 5, Web Mining, Databases, 
and Big Data, I covered another streaming algorithm.

Streaming algorithms are often approximate for fundamental reasons or because of roundoff 
errors. You should, therefore, try to use other algorithms if possible. Of course in many 
situations approximate results are good enough. For instance, it doesn't matter whether a 
user has 500 or 501 connections on a social media website. If you just send thousands of 
invitations, you will get there sooner or later.

Sketching is something you probably know from drawing. In that context, sketching means 
outlining rough contours of objects without any details. A similar concept exists in the world  
of streaming algorithms.

In this recipe, I cover the Count-min sketch (2003) by Graham Cormode and S. Muthu 
Muthukrishnan, which is useful in the context of ranking. For example, we may want to know 
the most viewed articles on a news website, trending topics, the ads with the most clicks, or 
the users with the most connections. The naive approach requires keeping counts for each 
item in a dictionary or a table. Dictionaries use hashing functions to calculate identifying 
integers, which serve as keys. For theoretical reasons, we can have collisions—this means that 
two or more items have the same key. The Count-min sketch is a two-dimensional tabular data 
structure that is small on purpose, and it uses hashing functions for each row. It is prone to 
collisions, leading to overcounting.

When an event occurs, for instance someone views an ad, we do the following:

1.	 For each row in the sketch, we apply the related hashing function using, for instance, 
the ad identifier to get a column index.

2.	 Increment the value corresponding with the row and column.

Each event is clearly mapped to each row in the sketch. When we request the count, we follow 
the opposite path to obtain multiple counts. The lowest count gives an estimate for the count 
of this item.

The idea behind this setup is that frequent items are likely to dominate less common items. 
The probability of a popular item having collisions with unpopular items is larger than of 
collisions between popular items.



Parallelism and Performance

396

How to do it...
1.	 The imports are as follows:

from nltk.corpus import brown
from nltk.corpus import stopwords
import dautil as dl
from collections import defaultdict
import matplotlib.pyplot as plt
import numpy as np
from IPython.display import HTML

2.	 Store the words of the NLTK Brown and stop words corpora in lists:
words_dict = dl.collect.IdDict()
dd = defaultdict(int)
fid = brown.fileids(categories='news')[0]
words = brown.words(fid)
sw = set(stopwords.words('english'))

3.	 Count the occurrence of each stopword:
for w in words:
    if w in sw:
        dd[w] += 1

4.	 Plot the distribution of count errors for various parameters of the Count-min sketch:
sp = dl.plotting.Subplotter(2, 2, context)
actual = np.array([dd[w] for w in sw])
errors = []

for i in range(1, 4):
    cm = dl.perf.CountMinSketch(depth=5 * 2 ** i,
                                width=20 * 2 ** i)

    for w in words:
        cm.add(words_dict.add_or_get(w.lower()))

    estimates = np.array([cm.estimate_count(words_dict.add_or_
get(w))
                        for w in sw])
    diff = estimates - actual
    errors.append(diff)

    if i > 1:
        sp.next_ax()
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    sp.ax.hist(diff, normed=True,
            bins=dl.stats.sqrt_bins(actual))
    sp.label()

sp.next_ax().boxplot(errors)
sp.label()
HTML(sp.exit())

Refer to the following screenshot for the end result:

The code is in the stream_demo.py file in this book's code bundle.

See also
ff The related Wikipedia page at https://en.wikipedia.org/wiki/

Count%E2%80%93min_sketch (retrieved January 2016)

https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
https://en.wikipedia.org/wiki/Count%E2%80%93min_sketch
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Harnessing the power of the GPU with 
OpenCL

Open Computing Language (OpenCL), initially developed by Apple Inc., is an open technology 
standard for programs, which can run on a variety of devices, including CPUs and GPUs that 
are available on commodity hardware, such as the machine I am using for this recipe. Since 
2009, OpenCL has been maintained by the Khronos Compute Working Group. Many hardware 
vendors, including the one I am partial to, have an implementation of OpenCL.

OpenCL is a language resembling C (actually, there are multiple C dialects or versions) 
with functions called kernels. Kernels can run in parallel on multiple processing elements. 
The hardware vendor gives the definition of the processing element. OpenCL programs are 
compiled at runtime for the purpose of portability.

Portability is the greatest advantage of OpenCL over similar technologies such as CUDA, which 
is an NVIDIA product. Another advantage is the ability to share work between CPUs, GPUs, and 
other devices. It has been suggested to use machine learning for optimal division of labor.

Pythonistas can write OpenCL programs with the PyOpenCL package. PyOpenCL adds 
extra features, such as object cleanup and conversion of errors, to Python exceptions. A 
number of other libraries use and in some ways enhance PyOpenCL (refer to the PyOpenCL 
documentation).

Getting ready
Install pyopencl with the following command:

$ pip install pyopencl 

I tested the code with PyOpenCL 2015.2.3. For more information, please refer to  
https://wiki.tiker.net/OpenCLHowTo.

How to do it...
The code is in the opencl_demo.ipynb file in this book's code bundle:

1.	 The imports are as follows:
import pyopencl as cl
from pyopencl import array
import numpy as np

https://wiki.tiker.net/OpenCLHowTo
https://wiki.tiker.net/OpenCLHowTo
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2.	 Define the following function to accept a NumPy array and perform a simple 
computation:
def np_se(a, b):
    return (a - b) ** 2

3.	 Define the following function to do the same calculation as in the previous step  
using OpenCL:
def gpu_se(a, b, platform, device, context, program):

4.	 Create a queue with profiling enabled (only for demonstration) and buffers to shuffle 
data around:
    queue = cl.CommandQueue(context,
                            properties=cl.command_queue_
properties.
                            PROFILING_ENABLE)
    mem_flags = cl.mem_flags
    a_buf = cl.Buffer(context,
                      mem_flags.READ_ONLY | mem_flags.COPY_HOST_
PTR,
                      hostbuf=a)
    b_buf = cl.Buffer(context,
                      mem_flags.READ_ONLY | mem_flags.COPY_HOST_
PTR, hostbuf=b)
    error = np.empty_like(a)
    destination_buf = cl.Buffer(context,
                                mem_flags.WRITE_ONLY,
                                error.nbytes)

5.	 Execute the OpenCL program and profile the code:
    exec_evt = program.mean_squared_error(queue, error.shape, 
None,
                                          a_buf, b_buf, 
destination_buf)
    exec_evt.wait()
    elapsed = 1e-9*(exec_evt.profile.end - exec_evt.profile.start)

    print("Execution time of OpenCL: %g s" % elapsed)

    cl.enqueue_copy(queue,
                    error, destination_buf)

    return error
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6.	 Generate random data as follows:
np.random.seed(51)
a = np.random.rand(4096).astype(np.float32)
b = np.random.rand(4096).astype(np.float32)

7.	 Access CPU and GPUs. This part is hardware dependent, so you may have to change 
these lines:
platform = cl.get_platforms()[0]
device = platform.get_devices()[2]
context = cl.Context([device])

8.	 Define a kernel with the OpenCL language:
program = cl.Program(context, """
    __kernel void mean_squared_error(__global const float *a,
    __global const float *b, __global float *result)
    {
        int gid = get_global_id(0);
        float temp = a[gid] - b[gid];
        result[gid] =  temp * temp;
    }
        """).build()

9.	 Calculate squared errors with NumPy and OpenCL (GPU) and measure execution times:
gpu_error = gpu_se(a, b, platform, device, context, program)

np_error = np_se(a, b)
print('GPU error', np.mean(gpu_error))
print('NumPy error', np.mean(np_error))
%time np_se(a, b)

Refer to the following screenshot for the end result:

See also
ff The PyOpenCL website at http://documen.tician.de/pyopencl/ (retrieved 

January 2016)
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A
Glossary

This appendix is a brief glossary of technical concepts used throughout Python Data Analysis 
and this book.

American Standard Code for Information Interchange (ASCII) was the dominant encoding 
standard on the Internet until the end of 2007, with UTF-8 (8-bit Unicode) taking over. ASCII is 
limited to the English alphabet and has no support for other alphabets.

Analysis of variance (ANOVA) is a statistical data analysis method invented by statistician 
Ronald Fisher. This method partitions the data of a continuous variable using the values of 
one or more corresponding categorical variable to analyze variance. ANOVA is a form of  
linear modeling.

Anaconda is a free Python distribution for data analysis and scientific computing. It has its 
own package manager, conda.

The Anscombe's quartet is a classic example, which illustrates why visualizing data is 
important. The quartet consists of four datasets with similar statistical properties. Each 
dataset has a series of x values and dependent y values.

The bag-of-words model: A simplified model of text, in which text is represented by a bag (a 
set in which something can occur multiple times) of words. In this representation, the order 
of the words is ignored. Typically, word counts or the presence of certain words are used as 
features in this model.

Beta in finance is the slope of a linear regression model involving the returns of the asset and 
the returns of a benchmark, for instance, the S & P 500 index.

Caching involves storing results, usually from a function call, in memory or on disk. If done 
correctly, caching helps by reducing the number of function calls. In general, we want to keep 
the cache small for space reasons.
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A clique is a subgraph that is complete. This is equivalent to the general concept of cliques, in 
which every person knows all the other people.

Clustering aims to partition data into groups called clusters. Clustering is unsupervised in the 
sense that the training data is not labeled. Some clustering algorithms require a guess for the 
number of clusters, while other algorithms don't.

Cohen's kappa measures agreement between the target and predicted class (in the context 
of classification)—similar to accuracy, but it also takes into account the random chance of 
getting the predictions. Kappa varies between negative values and one.

A complete graph is a graph in which every pair of nodes is connected by a unique 
connection.

The confusion matrix is a table usually used to summarize the results of classification. The 
two dimensions of the table are the predicted class and the target class.

Contingency table: A table containing counts for all combinations of the two categorical 
variables.

The cosine similarity is a common distance metric to measure the similarity of two 
documents. For this metric, we need to compute the inner product of two feature vectors. The 
cosine similarity of vectors corresponds to the cosine of the angle between vectors, hence the 
name.

Cross-correlation measures the correlation between two signals using a sliding inner product. 
We can use cross-correlation to measure the time delay between two signals.

The Data Science Toolbox (DST) is a virtual environment based on Ubuntu for data analysis 
using Python and R. Since DST is a virtual environment, we can install it on various operating 
systems.

The discrete cosine transform (DCT) is a transform similar to the Fourier transform, but it 
tries to represent a signal by a sum of cosine terms only.

The efficient-market hypothesis (EMH) stipulates that you can't, on average, "beat the 
market" by picking better stocks or timing the market. According to the EMH, all information 
about the market is immediately available to every market participant in one form or another 
and is immediately reflected in asset prices.

Eigenvalues are scalar solutions to the equation Ax = ax, where A is a two-dimensional matrix 
and x is a one-dimensional vector.

Eigenvectors are vectors corresponding to eigenvalues.

Exponential smoothing is a low-pass filter, which aims to remove noise.

Face detection tries to find (rectangular) areas in an image that represent faces.
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Fast Fourier transform (FFT): A fast algorithm to compute Fourier transforms. FFT is O(N log 
N), which is a huge improvement on older algorithms.

Filtering is a type of signal processing technique, involving the removal or suppression of part 
of the signal. Many filter types exist, including the median and Wiener filters.

Fourier analysis is based on the Fourier series, named after the mathematician Joseph 
Fourier. The Fourier series is a mathematical method to represent functions as an infinite 
series of sine and cosine terms. The functions in question can be real or complex valued.

Genetic algorithms are based on the biological theory of evolution. This type of algorithm is 
useful for searching and optimization.

GPUs (graphical processor units) are specialized circuits used to display graphics efficiently. 
Recently, GPUs have been used to perform massively parallel computations (for instance, to 
train neural networks).

Hadoop Distributed File System (HDFS) is the storage component of the Hadoop framework 
for big data. HDFS is a distributed filesystem, which spreads data on multiple systems, and is 
inspired by Google File System, used by Google for its search engine.

A hive plot is a visualization technique for plotting network graphs. In hive plots, we draw 
edges as curved lines. We group nodes by some property and display them on radial axes.

Influence plots take into account residuals, influence, and leverage for individual data points, 
similar to bubble plots. The size of the residuals is plotted on the vertical axis and can indicate 
that a data point is an outlier.

Jackknifing is a deterministic algorithm to estimate confidence intervals. It falls under the 
family of resampling algorithms. Usually, we generate new datasets under the jackknifing 
algorithm by deleting one value (we can also delete two or more values).

JSON (JavaScript Object Notation) is a data format. In this format, data is written down using 
JavaScript notation. JSON is more succinct than other data formats, such as XML.

K-fold cross-validation is a form of cross-validation involving k (a small integer number) 
random data partitions called folds. In k iterations, each fold is used once for validation,  
and the rest of the data is used for training. The results of the iterations can be combined  
at the end.

Linear discriminant analysis (LDA) is an algorithm that looks for a linear combination 
of features in order to distinguish between classes. It can be used for classification or 
dimensionality reduction by projecting to a lower-dimensional subspace.

Learning curve: A way to visualize the behavior of a learning algorithm. It is a plot of training 
and test scores for a range of training data sizes.
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Logarithmic plots (or log plots) are plots that use a logarithmic scale. This type of plot is 
useful when the data varies a lot, because they display orders of magnitude.

Logistic regression is a type of a classification algorithm. This algorithm can be used to 
predict probabilities associated with a class or an event occurring. Logistic regression is based 
on the logistic function, which has output values in the range from zero to one, just like in 
probabilities. The logistic function can therefore be used to transform arbitrary values into 
probabilities.

The Lomb-Scargle periodogram is a frequency spectrum estimation method that fits sines 
to data, and it is frequently used with unevenly sampled data. The method is named after 
Nicholas R. Lomb and Jeffrey D. Scargle.

The Matthews correlation coefficient (MCC) or phi coefficient is an evaluation metric for 
binary classification invented by Brian Matthews in 1975. The MCC is a correlation coefficient 
for target and predictions and varies between -1 and 1 (best agreement).

Memory leaks are a common issue of computer programs, which we can find by performing 
memory profiling. Leaks occur when we don't release memory that is not needed.

Moore's law is the observation that the number of transistors in a modern computer chip 
doubles every 2 years. This trend has continued since Moore's law was formulated, around 
1970. There is also a second Moore's law, which is also known as Rock's law. This law states 
that the cost of R&D and manufacturing of integrated circuits increases exponentially.

Named-entity recognition (NER) tries to detect names of persons, organizations, locations, 
and others in text. Some NER systems are almost as good as humans, but it is not an easy 
task. Named entities usually start with upper case, such as Ivan. We should therefore not 
change the case of words when applying NER.

Object-relational mapping (ORM): A software architecture pattern for translation between 
database schemas and object-oriented programming languages.

Open Computing Language (OpenCL), initially developed by Apple Inc., is an open technology 
standard for programs, which can run on a variety of devices, including CPUs and GPUs that 
are available on commodity hardware.

OpenCV (Open Source Computer Vision) is a library for computer vision created in 2000 and 
currently maintained by Itseez. OpenCV is written in C++, but it also has bindings to Python 
and other programming languages.

Opinion mining or sentiment analysis is a research field with the goal of efficiently finding 
and evaluating opinions and sentiment in text.

Principal component analysis (PCA), invented by Karl Pearson in 1901, is an algorithm that 
transforms data into uncorrelated orthogonal features called principal components. The 
principal components are the eigenvectors of the covariance matrix.
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The Poisson distribution is named after the French mathematician Poisson, who published  
it in 1837. The Poisson distribution is a discrete distribution usually associated with counts  
for a fixed interval of time or space.

Robust regression is designed to deal better with outliers in data than ordinary regression. 
This type of regression uses special robust estimators.

Scatter plot: A two-dimensional plot showing the relationship between two variables in a 
Cartesian coordinate system. The values of one variable are represented on one axis, and the 
other variable is represented by the other axis. We can quickly visualize correlation this way.

In the shared-nothing architecture, computing nodes don't share memory or files. The 
architecture is therefore totally decentralized, with completely independent nodes. The 
obvious advantage is that we are not dependent on any one node. The first commercial 
shared-nothing databases were created in the 1980s.

Signal processing is a field of engineering and applied mathematics that deals with the 
analysis of analog and digital signals corresponding to variables that vary with time.

Structured Query Language (SQL) is a specialized language for relational database querying 
and manipulation. This includes creating, inserting rows in, and deleting tables.

Short-time Fourier transform (STFT): The STFT splits a signal in the time domain into equal 
parts and then applies the FFT to each segment.

Stop words: Common words with low information value. Stop words are usually removed 
before analyzing text. Although filtering stop words is common practice, there is no standard 
definition of stop words.

The Spearman rank correlation uses ranks to correlate two variables with the Pearson 
correlation. Ranks are the positions of values in sorted order. Items with equal values get  
a rank, which is the average of their positions. For instance, if we have two items of equal 
value assigned positions 2 and 3, the rank is 2.5 for both items.

Spectral clustering is a clustering technique that can be used to segment images.

The star schema is a database pattern that facilitates reporting. Star schemas are 
appropriate for the processing of events such as website visits, ad clicks, or financial 
transactions. Event information (metrics such as temperature or purchase amount) is stored 
in fact tables linked to much smaller-dimension tables. Star schemas are denormalized,  
which places the responsibility of integrity checks on the application code. For this reason,  
we should only write to the database in a controlled manner.

Term frequency-inverse document frequency (tf-idf) is a metric measuring the importance 
of a word in a corpus. It is composed of a term frequency number and an inverse document 
frequency number. The term frequency counts the number of times a word occurs in a 
document. The inverse document frequency counts the number of documents in which  
the word occurs and takes the inverse of the number.
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Time series: An ordered list of data points, starting with the oldest measurements. Usually, 
each data point has a related timestamp.

Violin plots combine box plots and kernel-density plots or histograms in one type of plot.

Winsorising is a technique to deal with outliers and is named after Charles Winsor. In effect, 
Winsorising clips outliers to given percentiles in a symmetric fashion.



407

B
Function Reference

This appendix is a short reference of functions not meant as exhaustive documentation, 
but as an extra aid in case you are temporarily unable to look up the documentation. These 
functions are organized by package for various libraries.

IPython
The following displays a Python object in all frontends:

IPython.core.display.display(*objs, **kwargs)

The following renders HTML content:

IPython.display.HTML(TextDisplayObject)

The following displays interactive widgets connected to a function. The first parameter is 
expected to be a function:

IPython.html.widgets.interaction.interact (__interact_f=None, 
**kwargs)

The following arguments to this function are widget abbreviations passed in as keyword 
arguments, which build a group of interactive widgets tied to __interact_f and places  
the group in a container:

IPython.html.widgets.interaction.interactive (__interact_f, **kwargs)
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Matplotlib
The following method is used to get or set axis properties. For example, axis('off') turns 
off the axis lines and labels:

matplotlib.pyplot.axis(*v, **kwargs)

The following argument creates a new figure:	

matplotlib.pyplot.figure(num=None, figsize=None, dpi=None, 
facecolor=None, edgecolor=None, frameon=True, FigureClass=<class 
'matplotlib.figure.Figure'>, **kwargs)

The following argument turns the plot grids on or off:

matplotlib.pyplot.grid(b=None, which='major', axis='both', **kwargs)

The following argument plots a histogram:

matplotlib.pyplot.hist(x, bins=10, range=None, normed=False, 
weights=None, cumulative=False, bottom=None, histtype='bar', 
align='mid', orientation='vertical', rwidth=None, log=False, 
color=None, label=None, stacked=False, hold=None, **kwargs)

The following displays an image for array-like data:

matplotlib.pyplot.imshow(X, cmap=None, norm=None, aspect=None, 
interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, 
extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None, 
resample=None, url=None, hold=None, **kwargs)

The following shows a legend at an optionally specified location (for instance, plt.
legend(loc='best')):

matplotlib.pyplot.legend(*args, **kwargs)

The following argument creates a two-dimensional plot with single or multiple x, y pairs and 
corresponding optional format string:

matplotlib.pyplot.plot(*args, **kwargs)

The following creates a scatter plot of two arrays:

matplotlib.pyplot.scatter(x, y, s=20, c='b', marker='o', cmap=None, 
norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, 
verts=None, hold=None, **kwargs)

The following argument displays a plot:

matplotlib.pyplot.show(*args, **kw)
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The following argument creates subplots given the row number, column number, and index 
number of the plot. All these numbers start at one. For instance, plt.subplot(221)  
creates the first subplot in a two-by-two grid:

matplotlib.pyplot.subplot(*args, **kwargs)

The following argument puts a title on the plot:
matplotlib.pyplot.title(s, *args, **kwargs)

NumPy
The following creates a NumPy array with evenly spaced values within a specified range:

numpy.arange([start,] stop[, step,], dtype=None)

The following argument returns the indices that would sort the input array:

numpy.argsort(a, axis=-1, kind='quicksort', order=None)

The following creates a NumPy array from an array-like sequence, such as a Python list:

numpy.array(object, dtype=None, copy=True, order=None, subok=False, 
ndmin=0)

The following argument calculates the dot product of two arrays:

numpy.dot(a, b, out=None)

The following argument returns the identity matrix:

numpy.eye(N, M=None, k=0, dtype=<type 'float'>)

The following argument loads NumPy arrays or pickled objects from .npy, .npz or pickles. A 
memory-mapped array is stored in the filesystem and doesn't have to be completely loaded in 
memory. This is especially useful for large arrays:

numpy.load(file, mmap_mode=None)

The following argument loads data from a text file into a NumPy array:

numpy.loadtxt(fname, dtype=<type 'float'>, comments='#', 
delimiter=None, converters=None, skiprows=0, usecols=None, 
unpack=False, ndmin=0)

The following calculates the arithmetic mean along the given axis:

numpy.mean(a, axis=None, dtype=None, out=None, keepdims=False)
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The following argument calculates the median along the given axis:

numpy.median(a, axis=None, out=None, overwrite_input=False)

The following creates a NumPy array of specified shape and data type, containing ones:

numpy.ones(shape, dtype=None, order='C')

The following performs a least squares polynomial fit:

numpy.polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False)

The following changes the shape of a NumPy array:

numpy.reshape(a, newshape, order='C')

The following argument saves a NumPy array to a file in the NumPy .npy format:

numpy.save(file, arr)

The following argument saves a NumPy array to a text file:

numpy.savetxt(fname, X, fmt='%.18e', delimiter=' ', newline='\n', 
header='', footer='', comments='# ')

The following argument sets printing options:

numpy.set_printoptions(precision=None, threshold=None, edgeitems=None, 
linewidth=None, suppress=None, nanstr=None, infstr=None, 
formatter=None)

The following argument returns the standard deviation along the given axis:

numpy.std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False)

The following selects array elements from input arrays based on a Boolean condition:

numpy.where(condition, [x, y])

The following creates a NumPy array of specified shape and data type, containing zeros:
numpy.zeros(shape, dtype=float, order='C')

pandas
The following creates a fixed frequency datetime index:

pandas.date_range(start=None, end=None, periods=None, freq='D', 
tz=None, normalize=False, name=None, closed=None)
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The following argument generate various summary statistics, ignoring NaN values:

pandas.DataFrame.describe(self, percentile_width=None, 
percentiles=None, include=None, exclude=None)

The following creates a DataFrame object from a dictionary of array-like objects or 
dictionaries:

pandas.DataFrame. from_dict(data, orient='columns', dtype=None)

The following argument finds NaN and None values:

pandas.isnull(obj)

The following argument merges DataFrame objects with a database-like join on columns  
or indices:

pandas.merge(left, right, how='inner', on=None, left_on=None, 
right_on=None, left_index=False, right_index=False, sort=False, 
suffixes=('_x', '_y'), copy=True)

The following creates a DataFrame object from a CSV file:

pandas.read_csv(filepath_or_buffer, sep=',', dialect=None, 
compression=None, doublequote=True, escapechar=None, quotechar='"', 
quoting=0, skipinitialspace=False, lineterminator=None, 
header='infer', index_col=None, names=None, prefix=None, 
skiprows=None, skipfooter=None, skip_footer=0, na_values=None, na_
fvalues=None, true_values=None, false_values=None, delimiter=None, 
converters=None, dtype=None, usecols=None, engine='c', delim_
whitespace=False, as_recarray=False, na_filter=True, compact_
ints=False, use_unsigned=False, low_memory=True, buffer_lines=None, 
warn_bad_lines=True, error_bad_lines=True, keep_default_na=True, 
thousands=Nment=None, decimal='.', parse_dates=False, keep_date_
col=False, dayfirst=False, date_parser=None, memory_map=False, 
nrows=None, iterator=False, chunksize=None, verbose=False, 
encoding=None, squeeze=False, mangle_dupe_cols=True, tupleize_
cols=False, infer_datetime_format=False)

Scikit-learn
The following argument turns seed into a numpy.random.RandomState instance:

sklearn.utils.check_random_state(seed)

The following performs a grid search over given hyperparameter values for an estimator:

sklearn.grid_search.GridSearchCV estimator, param_grid, scoring=None, 
fit_params=None, n_jobs=1, iid=True, refit=True, cv=None, verbose=0, 
pre_dispatch='2*n_jobs', error_score='raise')
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The following argument splits arrays into random train and test sets:

sklearn.cross_validation.train_test_split(*arrays, **options)

The following returns the accuracy classification score:

sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, sample_
weight=None)

SciPy
The following computes the relative maxima of data:

scipy.signal.argrelmax(data, axis=0, order=1, mode='clip')

The following argument calculates the kurtosis of a dataset:

scipy.stats.kurtosis(a, axis=0, fisher=True, bias=True)

The following applies a median filter on an array:

scipy.signal.medfilt(volume, kernel_size=None)

The following argument calculates the skewness of a data set:

scipy.stats.skew(a, axis=0, bias=True)

Seaborn
The following argument plots a univariate distribution of observations:

seaborn.distplot(a, bins=None, hist=True, kde=True, rug=False, 
fit=None, hist_kws=None, kde_kws=None, rug_kws=None, fit_kws=None, 
color=None, vertical=False, norm_hist=False, axlabel=None, label=None, 
ax=None)

The following argument plots tabular data as a color-encoded matrix:

seaborn.heatmap(data, vmin=None, vmax=None, cmap=None, center=None, 
robust=False, annot=False, fmt='.2g', annot_kws=None, linewidths=0, 
linecolor='white', cbar=True, cbar_kws=None, cbar_ax=None, 
square=False, ax=None, xticklabels=True, yticklabels=True, mask=None, 
**kwargs)
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The following argument plots data and the corresponding linear regression model fit:

seaborn.regplot(x, y, data=None, x_estimator=None, x_bins=None, x_
ci='ci', scatter=True, fit_reg=True, ci=95, n_boot=1000, units=None, 
order=1, logistic=False, lowess=False, robust=False, logx=False, 
x_partial=None, y_partial=None, truncate=False, dropna=True, x_
jitter=None, y_jitter=None, label=None, color=None, marker='o', 
scatter_kws=None, line_kws=None, ax=None)

The following argument restores all matplotlib RC parameters to the default settings:

seaborn.reset_defaults()

The following argument restores all matplotlib RC parameters to the original settings:

seaborn.reset_orig()

The following argument plots the residuals of a linear regression:

seaborn.residplot(x, y, data=None, lowess=False, x_partial=None, 
y_partial=None, order=1, robust=False, dropna=True, label=None, 
color=None, scatter_kws=None, line_kws=None, ax=None)

The following argument sets aesthetic parameters:

seaborn.set(context='notebook', style='darkgrid', palette='deep', 
font='sans-serif', font_scale=1, color_codes=False, rc=None)

Statsmodels
The following argument downloads and returns the R dataset from the Internet:

statsmodels.api.datasets.get_rdataset(dataname, package='datasets', 
cache=False)

The following argument plots a Q-Q plot:

statsmodels.api.qqplot(data, dist, distargs=(), a=0, loc=0, scale=1, 
fit=False, line=None, ax=None)

The following argument creates an ANOVA table for one or more fitted linear models:

statsmodels.stats.anova.anova_lm()
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C
Online Resources

The following is a short list of resources including presentations, links to documentation, 
freely available IPython Notebooks, and data.

IPython notebooks and open data
For more information on IPython notebooks and open data, you can refer to the following:

ff Data science Python notebooks available at https://github.com/
donnemartin/data-science-ipython-notebooks (retrieved January 2016)

ff A collection of tutorials and examples for solving and understanding machine 
learning and pattern classification tasks available at https://github.com/
rasbt/pattern_classification (retrieved January 2016)

ff Awesome public datasets available at https://github.com/caesar0301/
awesome-public-datasets (retrieved January 2016)

ff UCI machine learning datasets available at https://archive.ics.uci.edu/ml/
datasets.html (retrieved January 2016)

ff Gallery of interesting IPython notebooks available at https://github.com/
ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks 
(retrieved January 2016)

https://github.com/donnemartin/data-science-ipython-notebooks
https://github.com/donnemartin/data-science-ipython-notebooks
https://github.com/rasbt/pattern_classification
https://github.com/rasbt/pattern_classification
https://github.com/caesar0301/awesome-public-datasets
https://github.com/caesar0301/awesome-public-datasets
https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
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Mathematics and statistics
ff Linear algebra tutorials from Khan Academy available at https://www.

khanacademy.org/math/linear-algebra (retrieved January 2016)

ff Probability and statistics tutorials from Khan Academy at https://www.
khanacademy.org/math/probability (retrieved January 2016)

ff Coursera course on linear algebra, which uses Python, available at https://www.
coursera.org/course/matrix (retrieved January 2016)

ff Introduction to probability by Harvard University, available at https://itunes.
apple.com/us/course/statistics-110-probability/id502492375 
(retrieved January 2016)

ff The statistics wikibook at https://en.wikibooks.org/wiki/Statistics 
(retrieved January 2016)

ff Electronic Statistics Textbook. Tulsa, OK: StatSoft. WEB: http://www.statsoft.
com/textbook/ (retrieved January 2016)

Presentations
ff Statistics for hackers by Jake van der Plas, available at https://speakerdeck.

com/jakevdp/statistics-for-hackers (retrieved January 2016)

ff Explore Data: Data Science + Visualization by Roelof Pieters, available at  
http://www.slideshare.net/roelofp/explore-data-data-science-
visualization (retrieved January 2016)

ff High Performance Python (1.5hr) Tutorial at EuroSciPy 2014 by Ian Ozsvald, available 
at https://speakerdeck.com/ianozsvald/high-performance-python-1-
dot-5hr-tutorial-at-euroscipy-2014 (retrieved January 2016)

ff Mastering Linked Data by Valerio Maggio, available at https://speakerdeck.
com/valeriomaggio/mastering-linked-data-with-ptyhon-at-pydata-
berlin-2014 (retrieved January 2016)

ff Fast Data Analytics with Spark and Python by Benjamin Bengfort, available at 
http://www.slideshare.net/BenjaminBengfort/fast-data-analytics-
with-spark-and-python (retrieved January 2016)

ff Social network analysis with Python by Benjamin Bengfort, available at http://
www.slideshare.net/BenjaminBengfort/social-network-analysis-
with-python (retrieved January 2016)

ff SciPy 2015 conference list of talks, available at https://www.youtube.com/pl
aylist?list=PLYx7XA2nY5Gcpabmu61kKcToLz0FapmHu (retrieved January 
2016)

https://www.khanacademy.org/math/linear-algebra
https://www.khanacademy.org/math/linear-algebra
https://www.khanacademy.org/math/probability
https://www.khanacademy.org/math/probability
https://www.coursera.org/course/matrix
https://www.coursera.org/course/matrix
https://itunes.apple.com/us/course/statistics-110-probability/id502492375
https://itunes.apple.com/us/course/statistics-110-probability/id502492375
https://en.wikibooks.org/wiki/Statistics
http://www.statsoft.com/textbook/
http://www.statsoft.com/textbook/
https://speakerdeck.com/jakevdp/statistics-for-hackers
https://speakerdeck.com/jakevdp/statistics-for-hackers
http://www.slideshare.net/roelofp/explore-data-data-science-visualization
http://www.slideshare.net/roelofp/explore-data-data-science-visualization
https://speakerdeck.com/ianozsvald/high-performance-python-1-dot-5hr-tutorial-at-euroscipy-2014
https://speakerdeck.com/ianozsvald/high-performance-python-1-dot-5hr-tutorial-at-euroscipy-2014
https://speakerdeck.com/valeriomaggio/mastering-linked-data-with-ptyhon-at-pydata-berlin-2014
https://speakerdeck.com/valeriomaggio/mastering-linked-data-with-ptyhon-at-pydata-berlin-2014
https://speakerdeck.com/valeriomaggio/mastering-linked-data-with-ptyhon-at-pydata-berlin-2014
http://www.slideshare.net/BenjaminBengfort/fast-data-analytics-with-spark-and-python
http://www.slideshare.net/BenjaminBengfort/fast-data-analytics-with-spark-and-python
http://www.slideshare.net/BenjaminBengfort/social-network-analysis-with-python
http://www.slideshare.net/BenjaminBengfort/social-network-analysis-with-python
http://www.slideshare.net/BenjaminBengfort/social-network-analysis-with-python
https://www.youtube.com/playlist?list=PLYx7XA2nY5Gcpabmu61kKcToLz0FapmHu
https://www.youtube.com/playlist?list=PLYx7XA2nY5Gcpabmu61kKcToLz0FapmHu
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ff Statistical inference in Python, available at https://sites.google.com/site/
pyinference/home/scipy-2015 (retrieved January 2016)

ff Ibis: Scaling Python Analytics on Hadoop and Impala by Wes McKinney, available at 
http://www.slideshare.net/wesm/ibis-scaling-python-analytics-
on-hadoop-and-impala (retrieved January 2016) 

ff PyData: The Next Generation by Wes McKinney, available at http://www.
slideshare.net/wesm/pydata-the-next-generation (retrieved  
January 2016)

ff Python as the Zen of Data Science by Travis Oliphant, available at http://www.
slideshare.net/teoliphant/python-as-the-zen-of-data-science 
(retrieved January 2016)

ff PyData Texas 2015 Keynote by Peter Wang, available at http://www.
slideshare.net/misterwang/pydata-texas-2015-keynote (retrieved 
January 2016)

ff What's new in scikit-learn 0.17 by Andreas Mueller, available at http://www.
slideshare.net/AndreasMueller7/whats-new-in-scikitlearn-017 
(retrieved January 2016)

ff Tree models with Scikit-learn: Great models with little assumptions by Gilles Loupe, 
available at http://www.slideshare.net/glouppe/slides-46767187 
(retrieved January 2016)

ff Mining Social Web APIs with IPython Notebook (Data Day Texas 2015) by Matthew 
Russell, available at http://www.slideshare.net/ptwobrussell/mining-
social-web-ap-iswithipythonnotebookddtx2015 (retrieved January 2016)

ff Docker for data science by Calvin Giles, available at http://www.slideshare.
net/CalvinGiles/docker-for-data-science (retrieved January 2016)

ff 10 more lessons learned from building Machine Learning systems by Xavier 
Amatriain, available at http://www.slideshare.net/xamat/10-more-
lessons-learned-from-building-machine-learning-systems (retrieved 
January 2016)

ff IPython & Project Jupyter: A language-independent architecture for open computing 
and data science by Fernando Perez, available at https://speakerdeck.com/
fperez/ipython-and-project-jupyter-a-language-independent-
architecture-for-open-computing-and-data-science (retrieved January 
2016)

ff Scikit-learn for easy machine learning: the vision, the tool, and the project by Gael 
Varoquaux, available at http://www.slideshare.net/GaelVaroquaux/
slides-48793181 (retrieved January 2016)

ff Big Data, Predictive Modeling and tools by Olivier Grisel, available at https://
speakerdeck.com/ogrisel/big-data-predictive-modeling-and-tools 
(retrieved January 2016)

https://sites.google.com/site/pyinference/home/scipy-2015
https://sites.google.com/site/pyinference/home/scipy-2015
http://www.slideshare.net/wesm/ibis-scaling-python-analytics-on-hadoop-and-impala
http://www.slideshare.net/wesm/ibis-scaling-python-analytics-on-hadoop-and-impala
http://www.slideshare.net/wesm/pydata-the-next-generation
http://www.slideshare.net/wesm/pydata-the-next-generation
http://www.slideshare.net/teoliphant/python-as-the-zen-of-data-science
http://www.slideshare.net/teoliphant/python-as-the-zen-of-data-science
http://www.slideshare.net/misterwang/pydata-texas-2015-keynote
http://www.slideshare.net/misterwang/pydata-texas-2015-keynote
http://www.slideshare.net/AndreasMueller7/whats-new-in-scikitlearn-017
http://www.slideshare.net/AndreasMueller7/whats-new-in-scikitlearn-017
http://www.slideshare.net/glouppe/slides-46767187
http://www.slideshare.net/ptwobrussell/mining-social-web-ap-iswithipythonnotebookddtx2015
http://www.slideshare.net/ptwobrussell/mining-social-web-ap-iswithipythonnotebookddtx2015
http://www.slideshare.net/CalvinGiles/docker-for-data-science
http://www.slideshare.net/CalvinGiles/docker-for-data-science
http://www.slideshare.net/xamat/10-more-lessons-learned-from-building-machine-learning-systems
http://www.slideshare.net/xamat/10-more-lessons-learned-from-building-machine-learning-systems
https://speakerdeck.com/fperez/ipython-and-project-jupyter-a-language-independent-architecture-for-open-computing-and-data-science
https://speakerdeck.com/fperez/ipython-and-project-jupyter-a-language-independent-architecture-for-open-computing-and-data-science
https://speakerdeck.com/fperez/ipython-and-project-jupyter-a-language-independent-architecture-for-open-computing-and-data-science
http://www.slideshare.net/GaelVaroquaux/slides-48793181
http://www.slideshare.net/GaelVaroquaux/slides-48793181
https://speakerdeck.com/ogrisel/big-data-predictive-modeling-and-tools
https://speakerdeck.com/ogrisel/big-data-predictive-modeling-and-tools
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ff Data Science Python Ecosystem by Christine Doig, available at https://
speakerdeck.com/chdoig/data-science-python-ecosystem (retrieved 
January 2016)

ff New Trends in Storing Large Data Silos in Python by Francesc Alted, available at 
https://speakerdeck.com/francescalted/new-trends-in-storing-
large-data-silos-in-python (retrieved January 2016)

ff Distributed Computing on your Cluster with Anaconda - Webinar 2015 by Continuum 
Analytics, available at http://www.slideshare.net/continuumio/
distributed-computing-on-your-cluster-with-anaconda-webinar-2015 
(retrieved January 2016)

https://speakerdeck.com/chdoig/data-science-python-ecosystem
https://speakerdeck.com/chdoig/data-science-python-ecosystem
https://speakerdeck.com/francescalted/new-trends-in-storing-large-data-silos-in-python
https://speakerdeck.com/francescalted/new-trends-in-storing-large-data-silos-in-python
http://www.slideshare.net/continuumio/distributed-computing-on-your-cluster-with-anaconda-webinar-2015
http://www.slideshare.net/continuumio/distributed-computing-on-your-cluster-with-anaconda-webinar-2015
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D
Tips and Tricks for 
Command-Line and 

Miscellaneous Tools

In this book we used various tools, such as the IPython notebook and Unix shell commands. 
We have a short list of tips, which is not meant to be exhaustive. For working with databases,  
I recommend the DbVisualiser software available at https://www.dbvis.com/ (retrieved 
January 2016). It supports all the major database products and operating systems. Also, I like 
to use text expanders in a desktop environment.

IPython notebooks
I explained a minimal workflow for notebooks. Also, I made simple IPython widgets, which 
were used throughout the book, so I will describe them here. To run the IPython notebook 
code, follow these steps:

1.	 Start the IPython notebook either with your GUI or with the following command:
$ jupyter notebook

2.	 Run the code either cell by cell or in one run.

I made a widget that sets some of the matplotlib properties. The settings are stored in the 
dautil.json file in the current folder. These files should also be part of the code bundle.

The other IPython widget helps with setting up subplots. It takes care of setting titles, legends, 
and labels. I consider these strings to be configuration and, therefore, store them in the 
dautil.json files too.

https://www.dbvis.com/
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Command-line tools
Some of these tools have GUI alternatives that are not always mentioned. In my opinion, it 
is a good idea to learn about using command-line tools even if you decide afterwards that 
you prefer the GUI options. Linux is one of the many popular operating systems that support 
CLI. You can find good documentation about Linux tools at http://tldp.org/ (retrieved 
January 2016). Most information on the website is generic and useful on other operating 
systems as well, such as OS X.

Navigation is often cumbersome in the CLI world. I find bashmarks a good tool to help you 
with that. You can find bashmarks at https://github.com/huyng/bashmarks (retrieved 
January 2016). The steps to install bashmarks are as follows:

1.	 Type the following in a terminal:
$ git clone git://github.com/huyng/bashmarks.git

2.	 Now, type this in the terminal:
$ cd bashmarks

3.	 Next, type the following:
$ make install

4.	 Source either in a configuration file or just the current session:
$ source ~/.local/bin/bashmarks.sh

The following table lists the bashmarks commands:

Command Description
s <bookmark_name> This saves the current directory as bookmark_name
g <bookmark_name> This goes to the directory associated with bookmark_name
p <bookmark_name> This prints the directory associated with bookmark_name
d <bookmark_name> This deletes the bookmark
l This lists all available bookmarks

The alias command
The alias command allows you to define a short mnemonic for a long command. For 
instance, we can define the following alias to start the IPython server when we type ipnb:

$ alias ipnb='ipython notebook'

http://tldp.org/
https://github.com/huyng/bashmarks
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We can define aliases for the current session only, but usually we define aliases in the 
.bashrc startup file (the dot in the file name means that it is a hidden file) found in the home 
directory. If you find yourself having many aliases, it may be useful to create a file containing 
all the aliases. You can then source this file from .bashrc.

Command-line history
The command-line history is a mechanism to minimize the number of keystrokes. You can 
read more about it at http://www.tldp.org/LDP/GNU-Linux-Tools-Summary/html/
x1712.htm (retrieved January 2016).

To simply execute the last run command, type the following again:

$ !!

Depending on which shell mode (vi or emacs) you are in, you may prefer other ways  
to navigate the history. The up and down arrows on your keyboard should also let you  
navigate history.

A common use case is to search for a long command we executed in the past and run it again. 
We can search through history, as follows:

$ history|grep <search for something>

You can of course shorten this using the aliasing mechanism or with a desktop text expander. 
The search gives a list of commands with numbers ranked in chronological order. You can 
execute, for instance, the command numbered 328, as follows:

$ !328

If, for example, you wish to execute the last command that started with python, type the 
following:

$ !python

Reproducible sessions
Chapter 1, Laying the Foundation for Reproducible Data Analysis explained the value of 
reproducible analysis. In this context, we have the script command, which is a way to 
capture commands and the output of a session.

http://www.tldp.org/LDP/GNU-Linux-Tools-Summary/html/x1712.htm
http://www.tldp.org/LDP/GNU-Linux-Tools-Summary/html/x1712.htm
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Docker tips
Docker is a great technology, but we have to be careful not to make our images too big and to 
remove image files when possible. The docker-clean script at https://gist.github.
com/michaelneale/1366325a7737c4cb80b0 (retrieved January 2016) helps reclaim 
space.

I found it useful to have an install script, which is just a regular shell script, and I added it  
to the Dockerfile as follows:

ADD install.sh /root/install.sh

Python creates __pycache__ directories for the purpose of optimization (we can disable this 
option in various ways). These are not strictly needed and can be easily removed as follows:

find /opt/conda -name \__pycache__ -depth -exec rm -rf {} \;

Anaconda puts a lot of files in its pkgs directory, which we can remove as follows:

rm -r /opt/conda/pkgs/*

Some people recommend removing test code; however, in certain rare cases, the non-test 
code depends on the test code. Also, it is useful to have the test code just in case.

There are some gotchas to be aware of when working with Docker. For instance, we have  
to set the PATH environment variable as follows:

export PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/
bin:${PATH}

For Python scripts, we also need to set the language settings as follows:

ENV LANG=C.UTF-8

It is generally recommended to specify the package version when you install software with 
pip or conda, such as like this:

$ conda install scipy=0.15.0

$ pip install scipy==0.15.0

When installing with conda, it is also recommended that you install multiple packages at 
once in order to avoid installing multiple versions of common dependencies:

$ conda install scipy=0.15.0 curl=7.26.0

https://gist.github.com/michaelneale/1366325a7737c4cb80b0
https://gist.github.com/michaelneale/1366325a7737c4cb80b0
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My Docker setup for the main Docker repository consists of a Dockerfile script and an 
install script (install.sh). The contents of the Dockerfile are as follows:

FROM continuumio/miniconda3

ADD install.sh /root/install.sh
RUN sh -x /root/install.sh

ENV LANG=C.UTF-8

I execute the install script with the –x switch, which gives more verbose output.

The contents of install.sh are as follows:

export PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/
bin:${PATH}
apt-get install -y libgfortran3
conda config --set always_yes True
conda install beautiful-soup bokeh=0.9.1 execnet=1.3.0 \ 
fastcache=1.0.2 \
    joblib=0.8.4 jsonschema ipython=3.2.1 lxml mpmath=0.19 \
    networkx=1.9.1 nltk=3.0.2 numba=0.22.1 numexpr=2.3.1 \
    pandas=0.16.2 pyzmq scipy=0.16.0 seaborn=0.6.0 \
    sqlalchemy=0.9.9 statsmodels=0.6.1 terminado=0.5 tornado 
conda install matplotlib=1.5.0 numpy=1.10.1 scikit-learn=0.17
pip install dautil==0.0.1a29
pip install hiveplot==0.1.7.4
pip install landslide==1.1.3
pip install LiveStats==1.0
pip install mpld3==0.2
pip install pep8==1.6.2
pip install requests-cache==0.4.10
pip install tabulate==0.7.5

find /opt/conda -name \__pycache__ -depth -exec rm -rf {} \;
rm -r /opt/conda/pkgs/*

mkdir -p /.cache/dautil/log
mkdir -p /.local/share/dautil
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transforming, with power ladder  114-116
winsorizing  107, 108
winsorizing, reference link  108
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data access
standardizing  30-33

data analysis  36
database indices

reference link  151
database migration scripts

setting up  147, 148
data points

highlighting, with influence plots  62-64
Data Science Toolbox (DST)

about  4, 402
installing  4-6

DbVisualiser software
reference link  419

decision tree learning  276
degree  258
degree_assortativity_coefficient() function

reference link  259
degree distribution

about  258
reference link  259

density() function
reference link  254

detail coefficients  197
determinants

about  339
reference link  341

DFFITS
reference link  65

dilation
about  346
reference link  348

dimension tables
star schema, implementing  153-157

discrete cosine transform (DCT)
about  168, 402
reference link  190
used, for analyzing signals  188-190

discrete wavelet transform (DWT)
applying  197-200
reference link  200

distance
reference link  65

distributed processing
execnet, using  380-383

Docker
URL  8
URL, for user guide  10

docker-clean script
reference link  422

Docker images
Python applications, sandboxing  8, 9

docker tips  422, 423
document graph, with cosine similarity

creating  261-264
dummy classifier

comparing with  316-318
strategies  316

DummyClassifier class
reference link  318

dummy regressor
comparing with  321-323
strategies  321

DummyRegressor class
reference link  323

Duncan dataset
reference link  114

E
ECDF class

reference link  86
efficient-market hypothesis (EMH)

about  216, 402
reference link  218

eigenvalues  402
eigenvectors  402
ensemble learning  266, 272
equal weights 2 asset portfolio

optimizing  230-233
execnet

reference link  383
used, for distributed processing  380-383

EXIF
reference link  357

ExifRead
reference link  357

exponential distribution
data, fitting into  68-70
reference link  70
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exponential smoothing
about  177-179, 402
reference link  179
smoothing factor  177

extra trees (extremely randomized trees)  292
extreme values

exploring  87-90

F
F1-score

computing  303-305
f1_score() function

reference link  306
face detection

about  348, 402
reference link  351

fact
star schema, implementing  153-157

false positive rate (FPR)  306
Fano factor

about  170
reference link  172

fastcache
reference link  393

Fast Fourier transform (FFT)  403
fastNlMeansDenoisingColored() function

reference link  345
fat tailed distribution

reference link  208
features

recursively eliminating  266-268
filtering  240, 403
findroot() function

reference link  130
Fisher transformation  91
folds  403
Fourier analysis  403
fourier() function

reference link  133
Fourier series  403
frequency spectrum  168
frequency spectrum, of audio

analyzing  185-187
frequentist approach  75
functools.lru_cache

reference link  393

G
gamma distribution

about  68
aggregated data, fitting  71, 72
for SciPy documentation, reference link  72
reference link  72

generalized extreme value distribution (GEV)
about  87
reference link  90

genetic algorithms  278, 403
genetic programming  278
geographical maps

displaying  58-60
reference link  58

ggplot2
about  60
reference link  61

ggplot2-like plots
reference link  60
using  60-62

Global Interpreter Lock (GIL)  367
goodness of fit

visualizing  309, 310
graphical processor units (GPU) 

about  403
harnessing, with Open Computing Language 

(OpenCL)  398-400
gradient descent

about  296
reference link  298

graph_clique_number() function
reference link  260

graphs
reference link  254

Gross Domestic Product (GDP)  58, 116

H
Haar cascades

used, for detecting faces  348, 350
Haar feature-based cascade classifiers  

system  348
Haar wavelet  197
Hadoop Distributed File System (HDFS)

URL  160
using  159, 160
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Haralick texture features
about  357
reference link  357

hat-matrix  63
heat dissipation  366
heatmaps

creating  51-53
Hertzsprung-Russell diagram

about  104
reference link  106

Hessian matrix
about  339
reference link  341

hierarchical clustering
about  294
applying, on images  360, 361
reference link  295, 361

hiveplot package
reference link  56

hive plots
about  55
used, for visualizing network graphs  55-57

HSL and HSV
reference link  354

HTML entities
dealing with  142-144

HTTP requests
caching  393, 394
reference link  394

Hurst exponent
about  197
reference link  200

hyperparameter optimization
about  266
reference link  292

I
image

denoising  343, 345
hierarchical clustering, applying  360, 361
metadata, extracting from  355-357
patches, extracting from  345-347
segmenting, with spectral clustering  361-363
texture features, extracting from  357-360

image processing   333

image segmentation
about  345
reference link  348

image texture
reference link  360

indices
adding, after table creation  150, 151

individual stocks
correlating, with broader market  211-213

influence plots
about  403
used, for highlighting data points   62-65

instantaneous phase
about  174
reference link  176

integral image
about  339
reference link  341

interquartile mean (IQM)  109
inverse document frequency  240
IPython

about  407
configuring  13-15
reference link  13-15
URL  11

IPython Notebook
about  10
used, for tracking package history  10-13
used, for tracking package versions  10-13

IPython notebook widgets
interacting with  43-46
reference link  47

J
jackknife resampling

reference link  83
jackknifing  81, 403
Java Runtime Environment (JRE)  159
JavaScript Object Notation (JSON)  403
joblib

installation link  61
used, for reusing models  292, 293

Just in time compiling
Numba, using  367, 368
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K
kernel density

estimating  78-80
estimating, reference link  80

kernel density plots
and box plots, combining with violin  

plots  54, 55
kernels  398
K-fold cross-validation  403
K-means clustering

reference link  165
kmeans() function

reference link  343
kurtosis

calculating  385-389

L
LDA

reference link  272
learning curves  266  403
least recently used (LRU) cache

used, for caching  390-392
leaves  276
lemmatization

about  240-243
reference link  244

leverage  63
linear algebra

arbitrary precision, using for  131, 132
linear discriminant analysis (LDA)

about  403
applying, for dimension reduction  271, 272

linkage() function
reference link  295

liquidity
stocks, ranking with  204, 205

LiveStats
reference link  390

lmplot() function
reference link  39

logarithmic plots  404
logarithms

used, for transforming data  116, 117
logging

for robust error checking  16-18
reference link  19

logistic function  404
logit() function

applying, for transforming  
proportions  120, 121

lombscargle() function
reference link  185

Lomb-Scargle periodogram
about  183, 404
reference link  185
using  183, 184

lu_solve() function
reference link  133

lxml documentation
URL  144

M
main sequence  104
mathematics and statistics

reference links  416
matplotlib

configuring  24-28
references  28
URL  25

matplotlib color maps
reference link  42, 43
selecting  42, 43

matrix of scatterplots
viewing  47-49

matthews_corrcoef() function
reference link  331

Matthews correlation coefficient (MCC)
about  304, 329, 331
reference link  331

maximum clique  259
maximum drawdown  206
maximum likelihood estimation  

(MLE) method  73
mean

calculating  385-389
mean absolute deviation (MAD)  70
mean_absolute_error() function

reference link  326
mean absolute error (MeanAE)

calculating  324, 325
reference link  326
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Mean Absolute Percentage Error (MAPE)
determining  319, 320
reference link  321

Mean Percentage Error (MPE)
determining  319, 320
reference link  321

mean silhouette coefficient
used, for evaluating clusters  313-315

mean_squared_error() function
reference link  313

mean squared error (MSE)
computing  310-312
reference link  313

medfilt() documentation
reference link  196

median_absolute_error() function
reference link  313

median absolute error (MedAE)
computing  310-312

mel frequency spectrum
about  188
reference link  188

mel scale
about  185
reference link  188-190

Memory class
reference link  293

memory leaks  384, 404
memory_profiler module

reference link  385
used, for profiling memory usage  384, 385

memory usage
profiling, with memory_profiler  

module  384, 385
metadata

extracting, from images  355-357
Miniconda  2
models

reusing, with joblib  292, 293
Modern Portfolio Theory (MPT)

about  231
reference link  233

Monte Carlo method
about  83
reference link  86

Moore's law  404

moving block bootstrapping time series data
about  193-195
reference link  196

mpld3
d3.js, used for visualization via  49-51

mpmath  104
multiple models

majority voting  273-275
stacking  272-275

multiple tasks
launching, with concurrent.futures  

module  374-376
multiple threads

running, with threading module  370-373

N
named entities

recognizing  244-246
named-entity recognition (NER)

about  244
reference link  244

nested cross-validation  289
network graphs

visualizing, with hive plots  55-57
NetworkX

reference link  56
news articles

tokenizing, in sentences  239
tokenizing, in words  239, 240

n-grams  240
noisy data

central tendency, measuring  109-111
non-ASCII text

dealing with  142-144
non-negative matrix factorization (NMF)

documentation link  248
reference link  248
used, for extraction of topics  246-248

non-parametric runs test
used, for examining market  216-218

Numba
used, for Just in time compiling  367-369

numerical expressions
speeding up, with Numexpr  369, 370
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Numexpr
reference link  370
used, for speeding up numerical  

expressions  369, 370
NumPy

about  409, 410
URL  16

NumPy print options
seeding  28, 29
URL  30

O
object detection  348
object-relational mapping (ORM)  136
octave  337
Open Computing Language (OpenCL)

about  404
used, for harnessing GPU  398-400

Open Source Computer Vision (OpenCV)
reference link  334
setting up  334-337

Ostu's thresholding method
about  346
reference link  348

outliers
about  104
clipping  104, 105
filtering  104, 105
reference link  104

P
pandas

about  410
configuring  22, 23
URL  22

pandas library
about  22
URL  22

PCA class
reference link  270

pdist() function
reference link  295

peaks
analyzing  172-174

Pearson's correlation
reference link  94
used, for correlating variables  91-94

pep8 analyzer
URL  31
using  30

periodogram() function
reference link  170

periodograms
used, for performing spectral  

analysis  168-170
presentations

reference links  416, 417
phase synchronization

measuring  174-176
phi coefficient  404
point biserial correlation

reference link  99
used, for correlating binary variable  97, 98
used, for correlating continuous  

variable  97, 98
Poisson distribution

about  405
aggregated counts, fitting  72-74
reference link  75

posterior distribution  75
power ladder

used, for transforming data  114, 115
power spectral density

estimating, with Welch's method  170-172
precision

computing  303-305
reference link  306

precision_score() function
reference link  306

principal component analysis (PCA)
about  404
applying, for dimension reduction  269
reference link  270

principal component regression (PCR)
about  269
reference link  270

principal components  269, 404
prior distribution  75
probability weights

used, for sampling  83-86
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probplot() function
reference link  310

Proj.4
reference link  58

proportions
transforming, by applying logit()  

function  120-122
PyOpenCL

reference link  400
PyOpenCL 2015.2.3

reference link  398
Python applications

sandboxing, with Docker images  8, 9
Python threading

reference link  373

R
R

homepage link  61
RandomForestClassifier class

reference link  279
random forests

about  276
reference link  279, 293
used, for learning  276-279

random number generators
seeding  28, 29

RANdom SAmple Consensus algorithm. See  
RANSAC algorithm

random walk hypothesis (RWH)  219
random walks

reference link  220
testing for  219, 220

RANSAC algorithm
reference link  282
used, for fitting noisy data  279-281

recall
computing  303-305
reference link  306

recall_score() function
reference link  306

receiver operating characteristic (ROC)
examining  306, 307
reference link  308

reports
standardizing  30-33

reproducible data analysis  2
reproducible sessions  421
requests-cache website

reference link  394
rescaled range

reference link  200
residual sum of squares (RSS)

calculating  324, 325
reference link  326

Resilient Distributed Datasets (RDDs)  160
resources

accessing asynchronously, with asyncio  
module  377-379

returns  202
returns statistics

analyzing  208-210
RFE class

reference link  268
RGB (red, green and blue)  342
risk and return

exploring  214
risk-free rate  214
robust error checking

with logs  16-18
robust linear model

fitting  122-124
robust regression  122, 405
roc_auc_score() function

reference link  308

S
savgol_filter() function

reference link  182
Savitzky-Golay filter

about  180
reference link  182

Scale-Invariant Feature Transform (SIFT)
about  337
applying  337, 338
documentation, reference link  339
reference link  339

scatter plot  405
scikit-learn  

about  60, 411
URL  28, 30
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scikit-learn documentation
reference link  80

SciPy  412
SciPy documentation

for exponential distribution, reference link  70
for Poisson distribution  75

seaborn  412
seaborn color palettes

about  39-41
reference link  42
selecting  39

search engine indexing
reference link  252

security market line (SML)  214
Selenium

URL  139
using  136

shapefile format  58
shared nothing architecture

about  381
reference link  383

shared-nothing architecture  405
Sharpe ratio

about  204
reference link  206
stocks, ranking with  204, 205

short-time Fourier transform (STFT)  185, 405
signal processing   405
signals

analyzing, with discrete cosine transform 
(DCT)  188-190

silhouette coefficients
about  313
reference link  315

silhouette_score() function
reference link  315

simple and log returns
computing  202, 203
reference link  203

skewness
calculating  385-389

smoothing
evaluating  180-182

social network closeness centrality
calculating  254, 255

social network density
computing  252-254

software aspects  366
software performance

improving  366
Solving a Problem in the Doctrine of  

Chances essay
reference link  78

Sortino ratio
about  206, 207
reference link  208
stocks, ranking with  206, 207

Spark
data, clustering  161-165
setting up  160, 161
URL  161

Spearman rank correlation
about  405
reference link  97
used, for correlating variables  94-96

spectral analysis
performing, with periodograms  168-170
reference link  170

spectral clustering
about  405
reference link  363
used, for segmenting images  361-363

spectral_clustering() function
reference link  363

Speeded Up Robust Features (SURF)
detecting  339-341
reference link  341

split() function
reference link  354

SQLAlchemy
reference link  153

stacking
about  273
reference link  275

Stanford Network Analysis Project (SNAP)
about  55
reference link  55

star schema
about  153, 405
implementing, with dimension  

tables  153-157
implementing, with fact  153-157
URL  158
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statsmodels
about  413
documentation, reference link  80

stemming  240-243
STFT

reference link  188
stock prices database

populating  225-229
tables, creating for  223-225

stop words
about  405
reference link  244

streaming algorithms  395
Structured Query Language (SQL)  405

T
table column

adding, to existing table  148, 149
tables

creating, for stock prices database  223, 224
tabulate PyPi

URL  33
term frequency  240
term frequency-inverse document frequency 

(tf-idf)  405
test web server

setting up  151-153
texture features

extracting, from images  357-360
TF-IDF

reference link  244
TF-IDF scores  240-243
TfidfVectorizer class

reference link  244
Theano

about  296, 297
documentation link  298
installing  296

threading module
used, for running multiple threads  370-373

time series  406
time series data

block bootstrapping  191-193
block bootstrapping, reference link  193

time slicing  370

tmean()
reference link  111

topic models
about  246
reference link  248

trend smoothing factor  177
trima()

reference link  111
trimean  109
trimmed mean  109
truncated mean  109
two-way ANOVA

reference link  101

U
unigrams  240
unit testing

about  19
performing  19-21

unittest library
URL  21

unittest.mock library
URL  21

V
Vagrant

about  4
reference link  6
URL  5

validation  289
validation curves  266
variables

correlating, with Pearson's correlation  91-93
correlating, with Spearman rank  

correlation  94-96
relations evaluating, with ANOVA  99-101

variance
calculating  385-389
reference link  390

Viola-Jones object detection framework
about  348
reference link  351
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violin plots
about  54, 406
box plots and kernel density plots,  

combining with  54, 55
reference link  55

VirtualBox
about  4, 6
URL  5

virtualenv
virtual environment, creating with  6-8

virtual environment
creating, with virtualenv  6-8
creating, with virtualenvwrapper  6-8
URL  8

virtualenvwrapper
URL  8
virtual environment, creating with  6-8

VotingClassifier class
reference link  275

W
Wald-Wolfowitz runs test

about  216
reference link  218

watermark extension
using  11

weak learners  286
web

scraping  139-141

web browsing
simulating  136-139

weighted least squares
about  125
used, for taking variance into  

account  125, 126
welch() function

reference link  172
Welch's method

reference link  172
used, for estimating power spectral  

density  170-172
winsorising  107, 108, 406
Within Cluster Sum of Squares (WCSS)  162
Within Set Sum Squared Error (WSSSE)  162
WordNetLemmatizer class

reference link  244

X
XPath

URL  139

Y
YAML

about  4
URL  4
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