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CHAPTER 1

Practical Machine Learning

A key to one of most sophisticated and effective approaches in ma‐
chine learning and recommendation is contained in the observation:
“I want a pony.” As it turns out, building a simple but powerful rec‐
ommender is much easier than most people think, and wanting a pony
is part of the key.

Machine learning, especially at the scale of huge datasets, can be a
daunting task. There is a dizzying array of algorithms from which to
choose, and just making the choice between them presupposes that
you have sufficiently advanced mathematical background to under‐
stand the alternatives and make a rational choice. The options are also
changing, evolving constantly as a result of the work of some very
bright, very dedicated researchers who are continually refining exist‐
ing algorithms and coming up with new ones.

What’s a Person To Do?
The good news is that there’s a new trend in machine learning and
particularly in recommendation: very simple approaches are proving
to be very effective in real-world settings. Machine learning is moving
from the research arena into the pragmatic world of business. In that
world, time to reflect is very expensive, and companies generally can’t
afford to have systems that require armies of PhDs to run them. Prac‐
tical machine learning weighs the trade-offs between the most ad‐
vanced and accurate modeling techniques and the costs in real-world
terms: what approaches give the best results in a cost-benefit sense?
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Let’s focus just on recommendation. As you look around, it’s obvious
that some very large companies have for some years put machine
learning into use at large scale (see Figure 1-1).

Figure 1-1. What does recommendation look like?

As you order items from Amazon, a section lower on the screen sug‐
gests other items that might be of interest, whether it be O’Reilly books,
toys, or collectible ceramics. The items suggested for you are based on
items you’ve viewed or purchased previously. Similarly, your video-
viewing choices on Netflix influence the videos suggested to you for
future viewing. Even Google Maps adjusts what you see depending on
what you request; for example, if you search for a tech company in a
map of Silicon Valley, you’ll see that company and other tech compa‐
nies in the area. If you search in that same area for the location of a
restaurant, other restaurants are now marked in the area. (And maybe
searching for a big data meetup should give you technology companies
plus pizza places.)

But what does machine learning recommendation look like under the
covers? Figure 1-2 shows the basics.
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Figure 1-2. The math may be scary, but if approached in the right
way, the concepts underlying how to build a recommender are easily
understood.

If you love matrix algebra, this figure is probably a form of comfort
food. If not, you may be among the majority of people looking for
solutions to machine-learning problems who want something more
approachable. As it turns out, there are some innovations in recom‐
mendation that make it much easier and more powerful for people at
all levels of expertise.

There are a few ways to deal with the challenge of designing recom‐
mendation engines. One is to have your own team of engineers and
data scientists, all highly trained in machine learning, to custom design
recommenders to meet your needs. Big companies such as Google,
Twitter, and Yahoo! are able to take that approach, with some very
valuable results.

Other companies, typically smaller ones or startups, hope for success
with products that offer drag-and-drop approaches that simply re‐
quire them to supply a data source, click on an algorithm, and look
for easily understandable results to pop out via nice visualization tools.
There are lots of new companies trying to design such semiautomated
products, and given the widespread desire for a turnkey solution,
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many of these new products are likely to be financially successful. But
designing really effective recommendation systems requires some
careful thinking, especially about the choice of data and how it is han‐
dled. This is true even if you have a fairly automated way of selecting
and applying an algorithm. Getting a recommendation model to run
is one thing; getting it to provide effective recommendations is quite
a lot of work. Surprisingly to some, the fancy math and algorithms are
only a small part of that effort. Most of the effort required to build a
good recommendation system is put into getting the right data to the
recommendation engine in the first place.

If you can afford it, a different way to get a recommendation system
is to use the services of a high-end machine-learning consultancy.
Some of these companies have the technical expertise necessary to
supply stunningly fast and effective models, including recommenders.
One way they achieve these results is by throwing a huge collection of
algorithms at each problem, and—based on extensive experience in
analyzing such situations—selecting the algorithm that gives the best
outcome. SkyTree is an example of this type of company, with its
growing track record of effective machine learning models built to
order for each customer.

Making Recommendation Approachable
A final approach is to do it yourself, even if you or your company lack
access to a team of data scientists. In the past, this hands-on approach
would have been a poor option for small teams. Now, with new de‐
velopments in algorithms and architecture, small-scale development
teams can build large-scale projects. As machine learning becomes
more practical and approachable, and with some of the innovations
and suggestions in this paper, the self-built recommendation engine
becomes much easier and effective than you may think.

Why is this happening? Resources for Apache Hadoop–based com‐
puting are evolving and rapidly spreading, making projects with very
large-scale datasets much more approachable and affordable. And the
ability to collect and save more data from web logs, sensor data, social
media, etc., means that the size and number of large datasets is also
growing.

How is this happening? Making recommendation practical depends
in part on making it simple. But not just any simplification will do, as
explained in Chapter 2.
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CHAPTER 2

Careful Simplification

Make things as simple as possible, but not simpler.
— Roger Sessions

 Simplifying Einstein’s quote

“Keep it simple” is becoming the mantra for successful work in the big
data sphere, especially for Hadoop-based computing. Every step saved
in an architectural design not only saves time (and therefore money),
but it also prevents problems down the road. Extra steps leave more
chances for operational errors to be introduced. In production, having
fewer steps makes it easier to focus effort on steps that are essential,
which helps keep big projects operating smoothly. Clean, streamlined
architectural design, therefore, is a useful goal.

But choosing the right way to simplify isn’t all that simple—you need
to be able to recognize when and how to simplify for best effect. A
major skill in doing so is to be able to answer the question, “How good
is good?” In other words, sometimes there is a trade-off between sim‐
ple designs that produce effective results and designs with additional
layers of complexity that may be more accurate on the same data. The
added complexity may give a slight improvement, but in the end, is
this improvement worth the extra cost? A nominally more accurate
but considerably more complex system may fail so often that the net
result is lower overall performance. A complex system may also be so
difficult to implement that it distracts from other tasks with a higher
payoff, and that is very expensive.

This is not to say that complexity is never advantageous. There cer‐
tainly are systems where the simple solution is not good enough and
where complexity pays off. Google’s search engine is one such example;
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machine translation is another. In the case of recommendation, there
are academic approaches that produce infinitesimally better results
than simpler approaches but that literally require hundreds of complex
mathematical models to cooperate to produce recommendations.
Such systems are vastly more complex than the simple recommender
described in this paper. In contrast, there are minor extensions of the
simple recommender described here, such as multimodal recommen‐
dations, that can have dramatically positive effects on accuracy. The
point is, look for the simplest solution that gives you results that are
good enough for your goals and target your efforts. Simplify, but sim‐
plify smart.

How do you do that? In machine learning, knowing which algorithms
really matter is a huge advantage. Recognizing similarities in use cases
that on the surface appear very different but that have underlying
commonalities can let you reuse simple, robust architectural design
patterns that have already been tested and that have a good track re‐
cord.

Behavior, Co-occurrence, and Text Retrieval
Smart simplification in the case of recommendation is the focus of this
paper. This simplification includes an outstanding innovation that
makes it much easier to build a powerful recommender than most
people expect. The recommender relies on the following observations:

1. Behavior of users is the best clue to what they want.
2. Co-occurrence is a simple basis that allows Apache Mahout to

compute significant indicators of what should be recommended.
3. There are similarities between the weighting of indicator scores

in output of such a model and the mathematics that underlie text-
retrieval engines.

4. This mathematical similarity makes it possible to exploit text-
based search to deploy a Mahout recommender using Apache
Solr/Lucene.
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Design of a Simple Recommender
The simple recommender uses a two-part design to make computation
efficient and recommendation fast. Co-occurrence analysis and ex‐
traction of indicators is done offline, ahead of time. The algorithms
used in this analysis are described in Chapter 4. The online part of the
recommender uses recent actions by the target user to query an
Apache Solr search engine and is able to return recommendations
quickly.

Let’s see how this works.
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CHAPTER 3

What I Do, Not What I Say

One of the most important steps in any machine-learning project is
data extraction. Which data should you choose? How should it be
prepared to be appropriate input for your machine-learning model?

In the case of recommendation, the choice of data depends in part on
what you think will best reveal what users want to do—what they like
and do not like—such that the recommendations your system offers
are effective. The best choice of data may surprise you—it’s not user
ratings. What a user actually does usually tells you much more about
her preferences than what she claims to like when filling out a cus‐
tomer ratings form. One reason is that the ratings come from a subset
of your user pool (and a skewed one at that—it’s comprised of the users
who like [or at least are willing] to rate content). In addition, people
who feel strongly in the positive or negative about an item or option
may be more motivated to rate it than those who are somewhat neutral,
again skewing results. We’ve seen some cases where no more than a
few percent of users would rate content.

Furthermore, most people do not entirely understand their own likes
and dislikes, especially where new and unexplored activities are con‐
cerned. The good news is that there is a simple solution: you can watch
what a user does instead of just what he says in ratings. Of course it is
not enough to watch one or a few users; those few observations will
not give you a reliable way to make recommendations. But if you look
at what everybody in a crowd does, you begin to get useful clues on
which to base your recommender.
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Collecting Input Data
Relying on user behavior as the input data for your recommender is a
simple idea, but you have to be clever in the ways you look for data
that adequately describes the behaviors that will give you useful clues
for recommendation, and you have capture and process that data. You
can’t analyze what you don’t collect.

There are many different options, but let’s take a look at a widespread
one: behavior of visitors on a website. Try this exercise: pick a popular
website that makes use of recommendation, such as Amazon. Go
there, browse the site, and have a friend observe your behavior. What
do you click on or hover over? When do you scroll down? And if you
were a serious visitor to the site, what might you buy?

All these behaviors provide clues about your interests, tastes, and pri‐
orities. The next question is whether or not the website analytics are
capturing them in logs. Also consider any behaviors that might have
been useful but were missed because of the design of the user interface
for the site. What changes or additions to the page might have en‐
couraged a useful action that could be recorded in web logs?
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More and more, websites are being designed so that much or even
nearly all interaction by the users is with software that runs in the
browser itself. The servers for the website will occasionally be asked
for a batch of data, but it is only in the context of the browser itself that
the user’s actions can be seen. In such browser-centric systems, it’s
important to record significant actions that users take and get that
record back to servers for recommendation analysis. Often, the part
of recommendation-system implementation that takes the most cal‐
endar time is simply adding sufficient logging to the user interface
itself. Given that lag and the fact that you probably want to analyze
months’ worth of data, it sometimes makes sense to start recording
behavioral data a good long while before starting to implement your
recommendation system.

Once you have the data you need, what kind of analysis will you be
doing? This is where the ponies come in.
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CHAPTER 4

Co-occurrence and
Recommendation

Once you’ve captured user histories as part of the input data, you’re
ready to build the recommendation model using co-occurrence. So
the next question is: how does co-occurrence work in recommenda‐
tions? Let’s take a look at the theory behind the machine-learning
model that uses co-occurrence (but without the scary math).

Think about three people: Alice, Charles, and Bob. We’ve got some
user-history data about what they want (inferentially, anyway) based
on what they bought (see Figure 4-1).
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Figure 4-1. User behavior is the clue to what you should recommend.

In this toy microexample, we would predict that Bob would like a
puppy. Alice likes apples and puppies, and because we know Bob likes
apples, we will predict that he wants a puppy, too. Hence our starting
this paper by suggesting that observations as simple as “I want a pony”
are key to making a recommendation model work. Of course, real
recommendations depend on user-behavior histories for huge num‐
bers of users, not this tiny sample—but our toy example should give
you an idea of how a recommender model works.

So, back to Bob. As it turns out, Bob did want a puppy, but he also
wants a pony. So do Alice, Charles, and a new user in the crowd, Ame‐
lia. They all want a pony (we do, too). Where does that leave us?
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Figure 4-2. A widely popular item isn’t much help as an indicator of
what to recommend because it is the same for almost everybody.

The problem is, if everybody gets a pony, it’s not a very good indicator
of what else to predict (see Figure 4-2). It’s too common of a behavior,
like knowing that almost everybody buys toilet tissue or clicks on the
home page on a website.
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What we are looking for in user histories is not only co-occurrence of
items that is interesting or anomalous co-occurrence. And with mil‐
lions or even hundreds of millions of users and items, it’s too much
for a human to understand in detail. That’s why we need machine
learning to make that decision for us so that we can provide good
recommendations.

How Apache Mahout Builds a Model
For our practical recommender, we are going to use an algorithm from
the open source, scalable machine-learning library Apache Mahout to
construct the recommendation model. What we want is to use Ma‐
hout’s matrix algebra to get us from user-behavior histories to useful
indicators for recommendation. We will build three matrices for that
purpose:
History matrix

Records the interactions between users and items as a user-by-
item matrix

Co-occurrence matrix
Transforms the history matrix into an item-by-item matrix, re‐
cording which items appeared together in user histories

Indicator matrix
Retains only the anomalous (interesting) co-occurrences that will
be the clues for recommendation

Figure 4-3 shows how we would represent that with our toy example.
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Figure 4-3. User history → co-occurrence → indicator matrix. Our
model, represented by the indicator matrix, encodes the fact that ap‐
ple is an indicator for recommending “puppy.”

Mahout’s ItemSimilarityJob runs the RowSimilarityJob, which in
turn uses the log likelihood ratio test (LLR) to determine which co-
occurrences are sufficiently anomalous to be of interest as indicators.
So our “everybody wants a pony” observation is correct but not one
of the indicators for recommendation.

Relevance Score
In order to make recommendations, we want to use items in recent
user history as a query to find all items in our collection that have those
recent history items as indicators. But we also want to have some way
to sort items offered as recommendations in order of relevance. To do
this, indicator items can be given a relevance score that is the sum of
weights for each indicator. You can think of this step as giving bonus
points to indicators that are most likely to give a good recommenda‐
tion because they indicate something unusual or interesting about a
person’s interests.

Relevance Score | 17



Ubiquitous items (such as ponies) are not even considered to be in‐
dicators. Fairly common indicators should have small weights. Rare
indicators should have large weights. Relevance for each item to be
recommended depends on the size of the sum of weighted values for
indicators. Items with a large relevance score will be recommended
first.

At this point, we have, in theory, all that we need to produce useful
recommendations, but not yet in a manner to be used in practice. How
do we deliver the recommendations to users? What will trigger the
recommendations, and how do we do this in a timely manner?

In the practical recommender design, we exploit search-engine tech‐
nology to easily deploy the recommender for production. Text re‐
trieval, also known as text search, lets us store and update indicators
and metadata for items, and it provides a way to quickly find items
with the best indicator scores to be offered in recommendation in real
time. As a bonus, a search engine lets us do conventional search as
well. Among possible search engines that we could use, we chose to
use Apache Solr to deploy our recommendation model. The benefits
are enormous, as described in Chapter 5.
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CHAPTER 5

Deploy the Recommender

Before we discuss in more detail why search technology such as Solr
or Elasticsearch is a good and practical choice to deploy a recommen‐
dation engine in production, let’s take a quick look at what Apache
Solr and Apache Lucene actually are.

What Is Apache Solr/Lucene?
The Apache Lucene project produces two primary software artifacts.
One is called Lucene-Core (usually abbreviated to simply Lucene) and
the other is called Solr. Lucene-Core is a software library that provides
functions to support a document-oriented sort of database that is par‐
ticularly good at text retrieval. Solr is a web application that provides
a full, working web service to simplify access to the capabilities of
Lucene-Core. For convenience in this discussion, we will mostly just
say “Solr” since it is not necessary to access the Lucene-Core library
directly for recommendations.

Data loaded into a Solr index is put into collections. Each collection is
made up of documents. The document contains specific information
about the item in fields. If the fields are indexed, then they become
searchable by Solr’s retrieval capabilities. It is this search capability that
we exploit to deploy the recommender. If fields are stored, they can be
displayed to users in a web interface.
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Why Use Apache Solr/Lucene to Deploy?
Lucene, which is at the heart of Solr, works by taking words (usually
called “terms”) in the query and attaching a weight to each one. Then
Solr examines every document that contains any of the query terms
and accumulates a score for each document according to the weights
of the terms that document contains. Rare terms are given large
weights, and common ones get small weights. Documents that accu‐
mulate high scores are taken to be more relevant than documents that
do not, therefore the search results are ordered by descending score.

Remarkably, the way that Solr scores documents based on the presence
of query terms in the document is very nearly the same mathematically
as the desired scoring for recommendations based on the presence of
indicators. This mathematical coincidence makes Solr a very attractive
vehicle for deploying indicator-based recommendations.

Furthermore, Solr is deployed widely in all kinds of places. As such, it
has enormous accumulated runtime and corresponding maturity.
That track record makes it very attractive for building stable systems.

What’s the Connection Between Solr and
Co-occurrence Indicators?
Back to Bob, apples, and puppies. We need a title, description, and
other metadata about all the items in order to recommend them. We
store the metadata for each item in Solr in fields in a conventional way
with one document per item. Figure 5-1 shows how a document for
“puppy” might look in a Solr index.
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Figure 5-1. Item metadata is stored in the Solr index.

The final step of offline learning is to use Solr to deploy the recom‐
mendation model by populating a new field in each Solr item docu‐
ment with the indicator IDs discovered for that item. This indicator
field is added to the Solr document you’ve already created. The result
of the deployment is shown in Figure 5-2, where an “indicators” field
has been added to the puppy document and contains the single indi‐
cator: apple.
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Figure 5-2. Indicator IDs making up the Mahout model are stored in
the new field of the same document in Solr index.

This toy example illustrates how user-behavior data and Mahout can
be used to find indicators for recommendation, and how these indi‐
cators can be stored in Solr documents for each item. Now you are
ready for a detailed description of how real recommenders are imple‐
mented based on this design.

How the Recommender Works
In order to build a recommender using a search engine, we have to
connect the input in the form of logs to a program from the Apache
Mahout library to do the co-occurrence analysis, and from there to a
search engine that actually delivers the recommendations to our users.

In an academic sense, analyzing historical user/item interactions to
create indicators and deploying these indicators to a search engine is
all we really need to do to create a recommendation engine. Practically
speaking, however, to create a real-world recommendation engine that
actually does useful work, there are a number of practical issues that
have to be addressed:

• We have to present enough information on the items being rec‐
ommended so that users can make sense of the recommendations.
This means that we have to load additional data known as item
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metadata into the search engine so that the recommendation re‐
sults are intelligible.

• We have to convert files into alternative forms in a number of
places.

• We have to make provisions for updating recommendations and
item metadata in a live system.

• We have to provide a way to integrate the recommendation results
into a live and usually preexisting system.

• We have to provide a way to do testing of alternative settings and
data sources.

• We have to provide ways for the operators of the system to un‐
derstand whether it is working correctly or not.

You may have noticed that almost all of these issues are exactly the
same as the issues involved in creating a working search engine and
have therefore been nicely addressed in Solr. In particular, Solr allows
documents to have fields that segregate different kinds of data and
allow them to be handled differently during searches or at presentation
time. Solr also provides extensive diagnostics; produces logs of search‐
es, results, and timings; and allows ad hoc queries to be done at any
time. As a result, pretty much all we have to do is add the plumbing
to convert and move data through the system between components in
order to get a basic recommendation engine running. Beyond that, all
we have to do is elaborate the data stored in the database and the
queries used to search that data to get even more advanced capabilities.

Two-Part Design
The design we are describing is for an item-based recommender that
has two parts: one offline and one online. Another benefit of our design
for simplifying a recommendation engine by combining Mahout and
Solr is that the time-intensive parts of the work can be done ahead of
time in an offline fashion.

The two parts of the design are:
Offline learning

Load Solr with metadata for items and precompute indicators
with Mahout-derived model
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Online recommendation
Rapid response by Solr search to offer realtime recommendations
that are triggered by recent event user histories

The offline steps of the two-part design are shown in Figure 5-3.

Figure 5-3. Offline learning: Basic item metadata is loaded into Solr.
Mahout independently generates indicators that are updated each
time the log analysis is run.

In this figure, the top path represents basic item metadata being stored
in Solr. To accomplish that, item metadata is converted to Solr’s native
JSON format and uploaded directly to Solr using the native REST in‐
terface that Solr provides. This typically is done once to load all of the
item metadata and then again as updates are received.

User-history log files are used as input for Mahout in order to derive
the contents of the indicator fields through co-occurrence, very much
like we did with our puppies and ponies. These indicators are refor‐
matted and uploaded for Solr to index. This is represented by the lower
path in the figure.

The co-occurrence analysis that generates indicators is typically done
every night. In this analysis, user-item interactions are read from log
files. These logs are transformed to discard extraneous data and to
convert data formats as required by the Mahout ItemSimilarityJob.
The result of the ItemSimilarityJob is then converted to Solr’s native
JSON format and uploaded as field-level updates to Solr.

Once the indicators are uploaded to Solr by the offline analysis, the
system is ready to make recommendations in real time. Typically, be‐
fore a new set of indicators goes live, ad hoc searches are performed
at the Solr level to spot check the quality of the metadata and indicators
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and to verify that the appropriate queries produce sensible recom‐
mendations.

Realtime recommendations are generated as shown in Figure 5-4.

Figure 5-4. Online recommendations: In order to produce recommen‐
dations in real time, the browser on a user’s computer or mobile de‐
vice sends a query to the web server. This query is composed from the
recent events for the user in question. The web server augments this
query as necessary with additional requirements and sends the query
to Solr, which responds (larger arrows) with recommendation results.
The web server then returns those results to the browser. Meanwhile,
user actions are stored in user logs for later processing to generate new
indicators.

In this figure, users connect to a web server from any kind of device
they might have. This web server records the activity of the users in
logs and passes portions of that history to Solr in the form of a query
on the indicator fields for items. Solr returns raw result lists, and the
web server formats these results for presentation to the user. The logs
produced by this server and others are exactly the logs that are given
back to the overnight co-occurrence analysis that finds the indicators
used in the searches.

Note that the form of the queries that are presented to Solr by the web
server doesn’t need to stay constant. The form of the query and even
which fields are searched can be changed, and that can result in
changes to how the recommendation engine works. If the web server
uses templates to generate these queries, it is possible to emulate many
different recommendation engines with a single Solr instance (which
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is large) and many templates (which are tiny). This capability can be
used to do testing on alternative recommendation strategies.

Similarly, the results passed back to the user from Solr need not be
passed through without any changes. Business logic can be imple‐
mented in the web server that adjusts which items are shown and in
what order. This can be used to avoid recommending out-of-stock
items or to adjust the diversity of the results.

The search capacities of Solr are what make realtime recommenda‐
tions possible. Users implicitly provide new event histories by access‐
ing the web server for our user interface via a variety of devices. These
short-term histories are collected either in server profiles on the server
or in the user’s browser, then formed into queries that use the indicator
fields in the Solr collection. Items retrieved by Solr based on these
queries are offered as recommendations. User actions are also logged
and later used to fuel the next offline analysis.

Up to this point, we have described end-to-end the simple but pow‐
erful two-part design for a recommender that has offline learning and
online recommendation. This description started with the observation
of behavior of many users and went through use of a machine-learning
model deployed using search technology. Now let’s take a look at an
actual recommender that was built according to this plan.

26 | Chapter 5: Deploy the Recommender



CHAPTER 6

Example: Music Recommender

One of the best ways to learn how a recommender works is to put your
hands on one. With that in mind, we developed a concrete example of
a recommender for a machine-learning course developed by MapR
Technologies, a distributed computing platform company, with help
from a training and consulting company, Big Data Partnership. The
recommender is for a mock business, Music Machine. We explore it
here to illustrate what we’ve covered so far.

Business Goal of the Music Machine
This mock music company wants to increase stickiness for their web-
based music-listening site by offering visitors enticing music recom‐
mendations that will keep them on the site longer and keep them
coming back.

The business is a figment of the authors’ imagination, but the music-
recommendation engine and non-public Music Machine website (see
Figure 6-1) are real. They provide a working example of a simple in-
production recommender built according to the design we’ve been
discussing.
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Figure 6-1. Screenshot of the mock music-listening website for which a
real Mahout-Solr recommender was built.

Online businesses with similar goals are quite real and widespread,
and you have most likely encountered them yourself, whether the
items of interest were music, books, new cars, destinations, or some‐
thing else.

Data Sources
Two types of data are needed for the music recommender: metadata
about the items (artists, albums, tracks) for music that will be recom‐
mended and histories of the behavior of a large number of site visitors
to serve as the training data for the Apache Mahout analysis system.
Where did we get such data for our imaginary company?

The music (item) data came from the Music Brainz database, which
is a public-domain database of music information. The Music Brainz
database was downloaded directly from the MusicBrainz website and
imported into a Postgres database. The tables that describe artists and
records were simplified and dumped directly from Postgres in tab-
delimited format that could be imported directly into Apache Solr. As
described earlier, the uploading was done as one large task when the
recommender was being built. Updates to the database can be impor‐
ted into Solr as new music is made available.

The logs containing user behavior historical data were generated
using random-number generators that simulated listeners who did a
random walk among musical genres. This is a very simple model that
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allows some plausible recommendations to be made, but it does not
fully emulate real users. These simulated listening logs were formatted
as CSV data to emulate data as a web server might collect it. The quality
of the recommendations in the demonstration system are primarily
limited by the quality of the synthetic data. Much as with a real system,
getting more and better data would make a large difference in quality
of the recommendations.

Figure 6-2 shows a small excerpt from one of these synthetic logs. In
this log, we see events that start 9,669 seconds (simulated time) from
the beginning of the simulation in which user 119 listens first to a song
from artist 683689 (Benny Goodman) and then to a song from artist
2461 (Duke Ellington).

Figure 6-2. Excerpt of user listening behavior data. User 119 listened
to an entire Ellington track start to finish and then started another
Duke Ellington track. If beacons are every 10 seconds, how long was
the first song?

Recommendations at Scale
Simulating the listening histories produces a lot of data, but it doesn’t
really require big data processing in order to produce billions of lis‐
tening records. Analyzing the resulting logs, however, is where we have
to start paying attention to what it takes to scale our system.
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The Music Machine recommender system processes the user listening
logs using Mahout’s ItemSimilarityJob to build a recommendation
model containing artist indicators. That computation is only part of
the story. As with any realistic working system, a significant amount
of plumbing code was required to convert formats between preexisting
systems. Figure 6-3 shows how this was done. Note that because we
used MapR, almost all the components were able to run in the cluster,
including Python, Postgres, and LucidWorks.

Figure 6-3. Conventional and Hadoop computing in the offline part
of the recommender. Gray areas indicate parts of the Music Machine
recommender that run on a Hadoop-based cluster. We used the
MapR distribution for Apache Hadoop, which has a realtime dis‐
tributed file system. Several extra steps would be required to use the
file system found in other Hadoop distributions (HDFS).

The logs used the artist, track, and album IDs from the Postgres copy
of the MusicBrainz data. These IDs are, however, not suitable directly
for use with the ItemSimilarityJob from Mahout since that program
requires that all IDs be converted to integer indexes. In our Music
Machine recommender, this conversion was done using a Pig program
that produced two outputs. The first output from Pig is input for the
ItemSimilarityJob, and the second output is a dictionary that re‐
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cords the mapping from the original and the Mahout versions of the
IDs.

Apache Mahout’s ItemSimilarityJob processes the reindexed logs
through several steps in order to look for significant co-occurrences.
The output of this job contains the indicators that ultimately should
go into Solr, but the artist identifiers have to be converted back from
the IDs used by Mahout. This output is considerably smaller than the
original user history logs, so reformatting this output and uploading
the result to Solr can be done using a small Python script rather than
requiring another map-reduce program in Pig. Python is easier to
write and debug than Pig. For this reason, doing small steps using
Python pays off in better development productivity. For data up to
several hundred megabytes in size or so, Python can even be faster
because it doesn’t suffer the penalty of having to schedule and start an
entire map-reduce program.

As is typical in big data applications, the best tool for the job depends
on which job is being done. The example here uses multiple technol‐
ogies, including a conventional database, map-reduce programs,
higher-level languages like Pig, and conventional scripting languages
like Python. Using the MapR distribution for Apache Hadoop as the
basic platform simplifies the development of this recommendation
system because the realtime distributed file system of MapR allows all
of these components to share data transparently, without any copies
or file-system conversions. Therefore, the input, the internal table files,
and the output from Postgres can all live directly on the cluster. Like‐
wise, the Pig program can read log files that were imported using the
standard Linux utility rsync and can write a dictionary file that a
Python script can use directly.

A secondary benefit of having all the data on a MapR cluster is that we
can move processes like the Postgres database or the Python refor‐
matting to any machine in the cluster or to edge nodes that are just
outside the cluster but that have NFS access to the cluster.

This system could have been implemented on an ordinary Hadoop
cluster as well, but there would have been a number of extra conversion
and copy steps that would have made this example considerably more
complex. Obviously, with HDFS, the non-Hadoop conventional pro‐
grams would not be able to run on the cluster itself. Sharing data would
require network copies.
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A Peek Inside the Engine
For this project, we used Apache Solr via the commercial software
product known as LucidWorks Search. LucidWorks provides consid‐
erable convenience in working with Solr by providing a comprehen‐
sive binary package with good installers and a simpler web interface
than the native Solr interface provides.

Recall that data stored in Solr is organized as collections. For our music
item metadata, we used one collection each for artists, albums, and
tracks. In the artists collection, for example, there is a Solr document
for each artist. The document contains specific information about the
item in fields that can be indexed and made searchable by Solr’s text-
retrieval capabilities. In the Music Machine, this search capability is
used both for textual search, such as artist by name, and for recom‐
mendations.

Figure 6-4 shows a view of the status page for the artists collection as
seen using the LucidWorks administrative interface. This view is one
of the different views of each collection that LucidWorks provides in
its administrative interface, which gives you a convenient way to take
a peek into the internals of our music recommender. Clicking on the
Tools tab allows you to see additional views by searching for artist or
indicator ID, or you can view the entire collection by using an empty
search.

Figure 6-4. Developer view into the music recommender with the Lu‐
cidWorks dashboard for the artists collection of documents. Other op‐
tions include checking on which fields have been indexed or searching
by artist ID, artist name, indicator IDs, or any combination of those.
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The artist collection in the MusicMachine has indicator fields on only
a minority of all artists. This happens because the field only appears
when a value is inserted, and it is common that only a small fraction
of items are statistically found to be worth recommending in the co-
occurrence analysis.

Using Search to Make the Recommendations
Our demonstration program also includes a mockup of a music-
listening service running using a micro web server known as Twisted
Web. This easy-to-run open source web server can be configured with
Python. All the pages in the system are completely static, and all history
accumulation is done using browser cookies.

To demonstrate how recommendations occur with the demo site, a
user visits the Music Machine website and takes action in the form of
“listening” to a song by a favorite artist—in this case, a track by classic
jazz artist Duke Ellington. This behavior is retained in a browser
cookie, but when a user emulates listening to a track, it also has a
realtime effect: it triggers recommendations. The system does this by
formatting the list of artists in the recent listening history as a query
for Solr that retrieves other artists by searching for indicator artists.

Solr’s search finds the best matches based on the data stored in the
indicator fields of Solr documents in the artists collection. Solr com‐
putes a relevance score to determine which artists will be listed first in
the recommendations.
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Figure 6-5. The user’s view of the Mahout–Solr/Lucene recommender
in action on the Music Machine website. Recent listening history is
used as a query to retrieve recommended artists for this user.

The recommendations shown in Figure 6-5 were returned to a user
who listened to “Take the A Train” by Duke Ellington, as you can see
in the Listening History. Notice that Benny Goodman and His Boys
is also recommended but further down the list, below the highlighted
artists, Glenn Miller and Euday L. Bowman—both interesting sug‐
gestions for this user.

The recommendation engine built for the Music Machine web server
is a working recommender, and the results are OK, but not stellar.
Why? For one thing, the user histories used to find co-occurrence and
indicators were synthetic data instead of real histories for real visitors
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to a website. The synthetic data mimicked some aspects of the behav‐
iors of real users, but it isn’t a truly accurate representation of what
people do. Another limitation is that the system was only trained on
the equivalent of a few hours of data for a moderately sized website,
which is not enough data to show real subtleties.

Better or larger user history is one way that a successful recommender
can be made better. Chapter 7 discusses some other tips and tricks to
improve your recommender.
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CHAPTER 7

Making It Better

The two-part design for the basic recommender we’ve been discussing
is a full-scale system capable of producing high-quality recommen‐
dations. Like any machine-learning system, success depends in part
on repeated cycles of testing, evaluation, and tuning to achieve the
desired results. Evaluation is important not only to decide when a rec‐
ommender is ready to be deployed, but also as an ongoing effort in
production. By its nature, the model will change over time as it’s ex‐
posed to new user histories—in other words, the system learns. A rec‐
ommender should be evaluated not only on present performance but
also on how well it is setup to perform in the future.

As we pointed out in Chapter 2, as the developer or project director,
you must also decide how good is good or, more specifically, which
criteria define success in your situation—there isn’t just one yardstick
of quality. Trade-offs are individualized, and goals must be set appro‐
priately for the project. For example, the balance between extreme
accuracy in predictions or relevance and the need for quick response
or realistic levels of development effort may be quite different for a big
e-commerce site when compared to a personalized medicine project.
Machine learning is an automated technology, but human insight is
required to determine the desired and acceptable results, and thus
what constitutes success.

In practical recommendation, it’s also important to put your effort
where it pays off the most. In addition to the ongoing testing and
adjusting to make a recommender better, there are also several add-
on capabilities that are important in a real-world deployment of such
a system. These add-ons are, strictly speaking, a bit outside the scope
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of the recommender itself and have to do with how people interact
with a recommender as opposed to how a recommender works in
isolation. Even if they are outside the recommender itself, these add-
ons can still have a profound effect on the perceived quality of the
overall recommendation system.

Dithering
The surprising thing about the technique known as dithering is that
its approach is to make things worse in order to make them better.
Recall that the order in which items are recommended depends on
their relevance score. The basic approach in relevance dithering is to
shake things up by intentionally including in a list of the top hits a few
items with much smaller (i.e., less desirable) relevance. Why?

The idea is motivated by the observation that users don’t generally look
beyond the first screenful of results produced by a search or recom‐
mendation engine. You can see this if you plot the click-through rate
versus result position in the search results (called rank here) for all
search or recommendation results. Most likely, you will see something
a lot like what’s shown in Figure 7-1. Click-through will generally de‐
cline as rank increases due to decreasing relevance. At about rank 10,
users will have to scroll the screen to see more results, but many won’t
bother. Then at rank 20, even fewer will click to the next page.
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Figure 7-1. Why dithering is useful. Behavior of visitors to a website
shows that recommendations that appear on the second or later pages
are almost never seen by users and therefore do not provide critical
feedback to the recommender.

This behavior can have a profound effect on a recommendation en‐
gine, because if users never see the results on the second and later
pages, they won’t provide the recommendation engine with behavioral
feedback on whether these second-page results were actually any good.
As a result, the recommendation engine mostly gets feedback on re‐
sults that it already knows about and gets very little feedback on results
at the edge of current knowledge. This limitation causes the recom‐
mendation engine to stagnate at or near the initial performance level.
It does not continue to learn.

On the other hand, if the result lists are shuffled a bit, then results from
the second or even later pages have a chance of appearing on the first
page, possibly even above the fold. Although this change slightly di‐
lutes the initial relevance of the top recommendations, in the long run,
the system has a chance to discover excellent recommendations that
it would otherwise not know about. When that happens, the engine
will quickly start incorporating that discovery into mainstream results.
Once again, the recommender learns.

Dithering broadens the training data that’s fed to the recommendation
engine. Even if accuracy is adversely impacted during the first few days
of operation, the broader feedback quickly improves the accuracy well
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above initial levels. In fact, some recommendation-system designers
have told us that introducing dithering resulted in a greater improve‐
ment in quality than any other single change.

The implementation of dithering is quite simple. One way is to take
the result list and generate a score that is the log of the initial rank of
each result (r) combined with normally distributed random noise.
Then sort the results according to that score. This approach leaves the
top few results in nearly their original order, but depending on how
large the random noise is, results that would otherwise be deeply bur‐
ied can be lifted onto the first page of results.

Dithering also has the surprising effect of increasing user stickiness.
This happens because the recommendation page changes each time
the seed for the randomization changes. It is common to keep the seed
constant for minutes at a time. The change in the contents of the top
few recommendations when the seed does change seems to intrigue
users into repeatedly returning to the recommendation page. Para‐
doxically, users who don’t normally click to the second page of results
seem to be happy to return to the first page over and over to get ad‐
ditional results.

Anti-flood
Most recommendation algorithms, including the one discussed in this
paper, can give you too much of a good thing. Once it zeros in on your
favorite book, music, video, or whatever, any recommendation engine
that works on individual items is likely to give you seemingly endless
variations on the same theme if such variations can be found.

It is much better to avoid monotony in the user experience by pro‐
viding diversity in recommendations with no more than a few of each
kind of results. This approach also protects against having several
kinds of results obscured by one popular kind. It is conceivable to build
this preference for diversity into the recommendation engine itself,
but our experience has been that it is much easier to ruin an otherwise
good recommendation engine than it is to get diverse results out of
the engine while maintaining overall quality. As a precaution, it is
much easier to simply reorder the recommendations to make the re‐
sults appear more diverse.

To do this, many working recommendation systems have heuristic
rules known collectively as anti-flood measures. The way that these
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systems work is that they will penalize the rank of any results that
appear too similar to higher-ranked results. For instance, the second
song by the same artist might not be penalized, but the third song by
the same artist might be penalized by 20 result positions. This example
of penalizing the same artist is just one way of implementing anti-
flood. Many others are plausible, and which ones work best on your
data is highly idiosyncratic to your own situation.

When More Is More: Multimodal and Cross
Recommendation
Throughout this discussion, we’ve talked about the power of simpli‐
fication, but emphasized smart simplification. We have examined the
design and functioning of a simple recommender, one in which a sin‐
gle kind of user interaction with a single kind of items is employed to
suggest the same kind of interaction with the same kind of item. For
example, we might recommend music tracks for listening based on
user histories for tracks to which they and others have previously lis‐
tened.

But if you have the luxury of going beyond this basic recommendation
pattern, you may get much better results with a few simple additions
to the design.

Here’s the basis for the added design elements. People don’t just do one
thing (like want a pony). They buy a variety of items, listen to music,
watch videos, order travel tickets, browse websites, or comment on
their lives in email and social media. In all these cases, there are mul‐
tiple kinds of interactions with multiple kinds of items. Data for a
variety of interactions and items is often available when building a
recommender, providing a way to greatly enrich the input data for
your recommender model and potentially improve the quality of rec‐
ommendations.
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Figure 7-2. Multimodal recommendations can improve results.

The basic idea behind this multimodal approach is depicted in
Figure 7-2. The first example shows a simple recommendation pattern
in which there is a match between the type of interaction item and the
type of recommendation. For example, you could have user-viewing
histories as input data to give recommendations for video viewing,
such as, “you might like to watch these videos.” The triangles in
Figure 7-2 illustrate this situation for the first recommendation ex‐
ample.

Multimodal recommendation is shown as the more complicated ex‐
ample in the figure. Here, more than one type of behavior is used as
input data to train the recommender. Even the recent event history
that triggers realtime recommendation may not be the same type of
behavior as what is being recommended. In this example, for instance,
book buying or a query represents a new user event. In that case, the
system recommends video viewing in response to a book purchase or
a query instead of in response to video viewing. Your multimodal sys‐
tem is using a crossover of behavior to strengthen relevance or extend
the system based on which new histories are available.

42 | Chapter 7: Making It Better



As it turns out, the matrix transformations depicted back in Figure 1-2
as a “look under the covers” for a machine-learning recommender
happen to represent a multimodal recommendation. While multimo‐
dal or cross-recommendations are more complicated than simple rec‐
ommendations, they still are not out of reach. The good news is that
the innovations already described here, such as using search technol‐
ogy like Solr/Lucene to deploy a recommendation system, still apply
and make the next-level recommenders also relatively easy to imple‐
ment.
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CHAPTER 8

Lessons Learned

Real-world projects have real-world budgets for resources and effort.
It’s important to keep that in mind in the move from cutting-edge
academic research in machine learning to practical, deployable rec‐
ommendation engines that work well in production and provide prof‐
itable results. So it matters to recognize which approaches can make
the biggest difference for the effort expended.

Simplifications chosen wisely often make a huge difference in the
practical approach to recommendation. The behavior of a crowd can
provide valuable data to predict the relevance of recommendations to
individual users. Interesting co-occurrence can be computed at scale
with basic algorithms such as ItemSimilarityJob from the Apache
Mahout library, making use of log likelihood ratio anomaly-detection
tests. Weighting of the computed indicators improves their ability to
predict relevance for recommendations.

One cost-effective simplification is the innovative use of search capa‐
bilities, such as those of Apache Solr/Lucene, to deploy a recommender
at scale in production. Search-based, item-based, recommendation
underlies a two-part design for a recommendation engine that has
offline learning and realtime online recommendations in response to
recent user events. The result is a simple and powerful recommender
that is much easier to build than many people would expect.
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This two-part design for recommendation at large scale can be made
easier and even more cost effective when built on a realtime distributed
file system such as the one used by MapR. However, with some extra
steps, this design for a recommender can be implemented on any
Apache Hadoop-compatible distributed file system.

The performance quality of the recommender can generally be im‐
proved through rounds of evaluation and tuning, A/B testing, and
adjustments in production, plus dithering and anti-flood tricks to keep
the recommendation engine learning and keep the experience fresh
for users. Furthermore, additional levels of quality can be gained by
taking into account more than one type of behavior as input for the
learning model: the so-called multimodal approach to recommenda‐
tion.

Oh yes…and we still want that pony.

46 | Chapter 8: Lessons Learned



APPENDIX A

Additional Resources

Slides/Videos
• October 2013 Strata + Hadoop World (New York) talk by Ted

Dunning on building multimodal recommendation engine using
search technology: http://slidesha.re/16juGjO

• May 2014 Berlin Buzzwords video of “Multi-modal Recommen‐
dation Algorithms” talk by Ted Dunning: http://bit.ly/XXy2bm

Blog
Two related entries from Ted Dunning’s blog “Surprise and Coinci‐
dence”:

• On recommendation, LLR, and a bit of code: http://bit.ly/
1dCL5Vk

• Software tutorials for corpus analysis: http://bit.ly/1dZdKyX

Books
• Mahout in Action by Sean Owen, Robin Anil, Ted Dunning, and

Ellen Friedman (Manning 2011): http://amzn.to/1eRFSbb
— Japanese translation: Mahout in Action (O’Reilly Japan): http://

bit.ly/14td9DS
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— Korean translation: Mahout in Action (Hanbit Media, Inc.):
http://bit.ly/VzZHY9

• Apache Mahout Cookbook by Piero Giacomelli (Packt Publishing
2013): http://amzn.to/1cCtQNP

Training
One-day technical course, “Machine Learning with Apache Mahout:
Introduction to Scalable ML for Developers,” developed by the authors
for MapR Technologies and co-developed by Tim Seears of Big Data
Partnership. For details, see MapR or BDP.

Apache Mahout Open Source Project
For more information, visit the Apache Mahout website or Twitter.

LucidWorks
The LucidWorks website includes tutorials on Apache Solr/Lucid‐
Works.

Elasticsearch
Elasticsearch provides an alternative wrapper for Lucene. The tech‐
niques in this book work just as well for Elasticsearch as for Solr.
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