

Ted Dunning and Ellen Friedman

Practical Machine Learning
A New Look at Anomaly Detection

Practical Machine Learning
by Ted Dunning and Ellen Friedman

Copyright © 2014 Ellen Friedman and Ted Dunning. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department: 800-998-9938
or corporate@oreilly.com.

Editor: Mike Loukides

June 2014: First Edition

Revision History for the First Edition:

2014-05-14: First release

2014-08-08: Second release

See http://oreilly.com/catalog/errata.csp?isbn=9781491911600 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. Practical Machine Learning: A New Look at Anomaly
Detection and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their prod‐
ucts are claimed as trademarks. Where those designations appear in this book, and
O’Reilly Media, Inc. was aware of a trademark claim, the designations have been printed
in caps or initial caps.

Photos are copyright Ellen Friedman.

While every precaution has been taken in the preparation of this book, the publisher
and authors assume no responsibility for errors or omissions, or for damages resulting
from the use of the information contained herein.

ISBN: 978-1-491-91160-0

[LSI]

http://www.safaribooksonline.com/
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491911600

Table of Contents

1. Looking Toward the Future. 1

2. The Shape of Anomaly Detection. 7
Finding “Normal” 8

If you enjoy math, read this description of a probabilistic
model of “normal”… 10

Human Insight Helps 11
Finding Anomalies 12

Once again, if you like math, this description of anomalies
is for you… 13

Take-Home Lesson: Key Steps in Anomaly Detection 14
A Simple Approach: Threshold Models 14

3. Using t-Digest for Threshold Automation. 15
The Philosophy Behind Setting the Threshold 17
Using t-Digest for Accurate Calculation of Extreme

Quantiles 19
Issues with Simple Thresholds 20

4. More Complex, Adaptive Models. 23
Windows and Clusters 25
Matches with the Windowed Reconstruction: Normal

Function 28
Mismatches with the Windowed Reconstruction:

Anomalous Function 30
A Powerful But Simple Technique 32
Looking Toward Modeling More Problematic Inputs 34

iii

5. Anomalies in Sporadic Events. 35
Counts Don’t Work Well 36
Arrival Times Are the Key 38

And Now with the Math… 40
Event Rate in a Worked Example: Website Traffic Prediction 41
Extreme Seasonality Effects 43

6. No Phishing Allowed!. 47
The Phishing Attack 47
The No-Phishing-Allowed Anomaly Detector 49
How the Model Works 50
Putting It All Together 51

7. Anomaly Detection for the Future. 53

A. Additional Resources. 57

iv | Table of Contents

CHAPTER 1

Looking Toward the Future

Everyone loves a mystery, and at the heart of it, that’s what anomaly
detection is—spotting the unusual, catching the fraud, discovering the
strange activity. Anomaly detection has a wide range of useful appli‐
cations, from banking security to natural sciences to medicine to mar‐
keting. Anomaly detection carried out by a machine-learning program
is actually a form of artificial intelligence. With the ever-increasing
volume of data and the new types of data, such as sensor data from an
increasingly large variety of objects that needs to be considered, it’s no
surprise that there also is a growing interest in being able to handle
more decisions automatically via machine-learning applications. But
in the case of anomaly detection, at least some of the appeal is the
excitement of the chase itself.

1

Figure 1-1. Finding anomalies is the detective work of machine
learning.

When are anomaly-detection methods a good choice? Unlike fictional
detective stories, in anomaly detection, you may not have a clear sus‐
pect to search for, and you may not even know what the “crime” is. In
fact, one way to think about when to turn to anomaly detection is this:
Anomaly detection is about finding what you don’t know to look for.

You are searching for anomalies, but you don’t know what their char‐
acteristics will be. If you did, you could use a different form of machine
learning, called classification, or you would just write specific rules to
find the anomalies. But that’s not generally where you start.

Classification is a form of supervised learning where you have exam‐
ples of each kind of thing you are looking for. You apply a learning
algorithm to these examples to build a model that can use features of
new data to classify them into categories that represent each kind of
data of interest. When you have examples of normal and some number
of abnormal situations, classifers can help you mark new situations as
normal or abnormal. Even when you know about some kinds of
anomalies, it is always good to keep an eye out for new kinds that you
don’t know about. That is where anomaly detection is applied.

2 | Chapter 1: Looking Toward the Future

So you use the unsupervised-learning approach of anomaly detection
when you don’t know exactly what you are looking for. Anomaly de‐
tection is a discovery process to help you figure out what is going on
and what you need to look for. The anomaly-detection program must
discover interesting patterns or connections in the data itself, and the
detector does this by first identifying the most important aspect of
anomaly detection: finding what is normal. Once your model does that,
your machine-learning program can then spot outliers, in other
words, data that falls outside of what is normal.

Anomalies are defined not by their own characteristics, but in contrast
to what is normal. You may not know what the anomalies will look
like, but you can build a system to detect them in contrast to what
you’ve discovered and defined as being a normal pattern. Note that
normal in this context includes all of the anomalies that you already
know about and have accounted for using a classifier. The outliers are
only those events that don’t match what you already know. Consider
this way to think about the problem: anomaly in this context just
means different than expected—it does not refer to desirable or un‐
desirable. You may know of certain types of events that are somewhat
unusual and require attention, perhaps certain failures in a system. If
these occur sufficiently often to be well characterized, you can use a
classifier to catalog them as problems of a particular type. That’s a
somewhat different goal than true anomaly detection where you are
looking for events that are rare relative to what is expected and that
often are surprising, or at least undefined ahead of time.

Together, anomaly detection and classification make for a useful pair
when it comes to finding a solution to real-world problems. Anomaly
detection is used first—in a discovery phase—to help you figure out
what is going on and what you need to look for. You could use the
anomaly-detection model to spot outliers, then set up an efficient
classification model to assign new examples to the categories you’ve
already identified. You then update the anomaly detector to consider
these new examples as normal and repeat the process. This idea is
shown in Figure 1-2 as one way to use anomaly detection.

Looking Toward the Future | 3

Figure 1-2. Use anomaly detection when you don’t know what to look
for. Sometimes this discovery process makes a useful preliminary stage
to define the categories of interest for a classifier.

Anomaly detection, like classification, is not new, but recently there
has been an increased interest in using it. Fortunately, there also are
new approaches to carrying it out effectively in practical settings;
much more accurate and sophisticated methods are now available.
Some of the biggest changes have to do with being able to handle
anomaly detection at huge scale, in real time. We will describe some
approaches that can help, especially when using a realtime distributed
file system. We will focus particularly on approaches that have demon‐
strated, practical, and simple implementations.

The move from specialized academic research to methods that are
useful for practical machine learning is happening in response to more
than just an increase in the volume of available data—there is also a
great increase in new types of data. For example, many new forms of
sensors are being deployed. Smart meters monitor energy usage in
businesses and residential settings, reporting back every few minutes.
This information can be used individually or looked at as a group from
a particular geographical location.

4 | Chapter 1: Looking Toward the Future

Figure 1-3. This wall of smart meters reports a granular view of energy
usage for a utility company. Sensor data is becoming a huge source of
valuable information that can be analyzed through machine learning
techniques such as anomaly detection.

Industrial equipment such as drilling rigs and manufacturing tools use
sensors to report on a wide range of parameters. The advances in
medical device sensors are astounding. Radio-frequency identifica‐
tion (RFID) tags are also commonplace on merchandise in retail
stores, in warehouses, or even on your cat. Data provided by these
sensors and other sources range from simple identification signals to
complex measurements of temperature, pressure, vibrations, and
more.

How can reporting from all these interconnected objects be used?
Collectively, these objects begin to make up the Internet of Things
(IoT). Relationships between objects and people, between objects and
other objects, conditions in the present, and histories of their condi‐
tion over time can be monitored and stored for future analysis, but
doing so is quite a challenge. However, the rewards are also potentially
enormous. That’s where machine learning and anomaly detection can
provide a huge benefit.

Looking Toward the Future | 5

Analysts predict that the number of interconnected devices in the In‐
ternet of Things will reach the tens of billions less than a decade from
this writing. Machine-learning techniques will be critical to our un‐
derstanding of what the signals from devices are telling us.

As we collect and analyze more data from sensors, we achieve a more
granular view of how our systems are functioning, which in turn gives
us the opportunity for a greater awareness of when things change for
better or for worse. Not only is there a growing need for more accurate
anomaly detection, there is also a growing desire for new and more
efficient ways to “cut to the chase” in order to be able to put anomaly
detection to work in practical, real-world settings. Practical anomaly
detection is more than just selecting the right algorithm and having
the technical expertise to build the system—it also means finding sol‐
utions that take into account realistic limitations on resources, sched‐
uling demands including time-to-value to make the projects cost ef‐
fective, and correct understanding of business goals.

In this publication, we show you the underlying ideas of why anomaly
detection works and what it’s good for. We explore the idea of finding
what is normal, deciding how to measure things that are far from nor‐
mal and how far that must be to be considered an outlier (Chapters 2
and 3). We provide a new method to do this (t-digest) and look at how
it can be applied in very simple systems (Chapter 3) and also in more
complex systems (Chapters 4 and 5).

Throughout this report, we strongly recommend the use of adaptive,
probabilistic models for predicting what is normal and how to contrast
that to what is observed. One of our topics in Chapter 4 dabbles in
deep learning with a time-series example, or at least dips its toe into
the shallow end of that pool. Although this is an advanced concept,
the execution of it in our example is surprisingly simple—no advanced
math required.

Chapter 5 provides some very practical ways to model a system with
sporadic events, such as website traffic or e-commerce purchases. In
Chapter 6, we provide a practical illustration of many of the basic
concepts in the form of detecting a phishing attack on a secure website.
Let’s see how all this works.

6 | Chapter 1: Looking Toward the Future

CHAPTER 2

The Shape of Anomaly Detection

The exciting thing about anomaly detection is the sense of discovery.
You need a program that can spot what is unusual, so anomaly-
detection models are on the lookout for the outliers. To get a sense of
how this works, try a simple human-scale example, such as the one
shown in Figure 2-1. Can you spot an outlier?

Figure 2-1. Can you spot an anomaly in this data?

Despite the fact that there is apparent noise in the data of the horizontal
line shown in Figure 2-1, when you see data like this, it’s fairly easy to
see that the large spike appears to be an outlier. But is it?

7

What happens when you have a larger sample of data? Now your per‐
ception changes. What had appeared to be an anomaly turns out to be
part of a regular and even familiar pattern: in this case, the regular
frequency of a normally beating heart, recorded using an EKG, as
shown in Figure 2-2.

Figure 2-2. Normal heartbeat pattern recorded in an EKG. The spikes
that had, in isolation, appeared to be anomalies relative to the hori‐
zontal curve are actually a regular and expected part of this normal
pattern.

There’s an important lesson here, even in this simple small-scale
example:

Before you can spot an anomaly, you first have to figure out what “nor‐
mal” is.

Discovering “ normal” is a little more complicated than it sounds,
especially in a complex system. Often, to do this, you need a machine-
learning model. To do this accurately, you also need a large enough
sampling of data to get an accurate representation. Then you must find
a way to analyze the data and mathematically define what forms a
regular pattern in your training data.

Finding “Normal”
Let’s think for a moment about the basic ideas that underlie anomaly
detection, including the idea of discovering what is to be considered
a normal pattern of behavior. One basic but powerful way to do this
is to build a probabilistic model, an idea that we progressively develop

8 | Chapter 2: The Shape of Anomaly Detection

here and in Chapters 3 through 6. A good way to think about this is
in terms of mathematic symbols, but in case that’s not your preference,
consider the key ideas through this thought experiment.

Suppose you are studying birds in a particular location, and you ob‐
serve, identify and count how many birds and of what species pass by
a particular observation point over the course of days. An entirely
made-up example of what these observations might look like is shown
in Table 2-1.

Table 2-1. Bird watching provides a simple thought experiment to show
how a probabilistic model works. Once a new species was observed, we
watched for it on subsequent days. The synthetic data of this simplified
example helps you think about how, based on the observations you’ve
made, you could build a model to predict several things about what
you expect to observe on Day x.

Species Day 1 Day 2 Day 3 Day 4 Day 5 Day x

A 33 17 21 31 18 ?

B 7 1 2 3 3 ?

C 3 3 2 1 1 ?

D 5 3 0 0 0 ?

E 13 13 8 7 9 ?

F 1 0 0 0 0 ?

G 1 0 0 0 0 ?

H 3 3 5 1 6 ?

I - 2 1 0 1 ?

J - 1 0 0 0 ?

K - - - 1 0 ?

L - - - - 1 ?

Next - - - - - ?

Some species occur in fairly high numbers each day, and these species
tend to be observed every day. Several species occur much less com‐
monly. New species are seen almost every day, at least this early in the
experiment. You can predict several things for a subsequent day (or
short series of days):

• How many total birds you expect to see
• How many species you expect to see
• How many birds of each species will fly by

Finding “Normal” | 9

• How many new, previously unobserved, species will be seen

This prediction is nicely captured in the form of a probabilistic model.
It assumes that all things (species) have at least some likelihood to
occur, that some are more likely than others, and some are extremely
rare (or not yet observed), and so the estimate of their likelihood will
be a very small value. You can even predict how many new species you
might expect on a given day, even if you cannot predict which species
they will be. You can assign a probability for each event or type of event
and thus describe in probabilistic terms what you estimate to be “nor‐
mal.”

If you enjoy math, read this description of a
probabilistic model of “normal”…
For those of you who prefer a mathematical way to describe things,
read on. For the rest of you, just skip this description and go to the
next section.

Suppose that our best guess of the probability of some observation i
from the set of all possible observation is πi. The true underlying
probability is pi. Because our model is a probabilistic model, the values
πi are constrained by definition in the following way:

What this means is that if we make πi large for some i, then we have
to make it smaller for some other i. Moreover, since the πi have to all
be non-negative, smaller means closer to zero but never less than zero.
The very deep mathematical inference that we can draw here is that if
we make the average value of –log πi as small as possible, then we can
prove that the estimated probabilities, πi, will be as close as possible to
the true underlying probabilities, pi. In fact:

where the maximum is only achieved if πi = pi for all i.

A rare event is expected to have a small value for πi, and thus the value
for –log πi will all be a relatively large positive number. You might think

10 | Chapter 2: The Shape of Anomaly Detection

that creates a problem, making the average –log πi large when our best
estimate of probabilities would need for it to be small. But remember
that the average is computed by weighting things according to their
probability, so that each rare thing will only have a small contribution.

Depending on the details of your data and what they represent, there
are various ways to prepare data for use in such a model and a variety
of appropriate algorithms from which to choose. We will describe
several options in upcoming chapters.

Human Insight Helps
Discovering a normal pattern requires more than just a good machine-
learning model. Part of the process of discovering normal involves
human insight: you must interact with the modeling process to decide
what makes sense in your own situation. The example of a single
heartbeat shown in Figure 2-2 makes this point. In an abstract sense,
the spike is anomalous as compared to the rest of the data. In our
example, just collecting more data, such as what’s shown in a full EKG,
is more than enough to recognize that the spikes are a normal part of
the heart function, but before seeing more data, an expert who knew
it was an EKG being analyzed would also tell you that the spike was
not an anomaly.

Our bird-watching thought experiment can also illustrate this point.
Suppose you observe a brown pelican—is this to be expected? A do‐
main expert would tell you yes, if you live near a coastal region of North
America, or no if you live for instance in the inland state of North
Dakota. Similarly, cedar waxwings are not seen for most of the year in
California but sightings suddenly become relatively commonplace
during a short period of migration. Of course the historical data would
reveal these fluctuations, and this is just an analogy, but the point is
that human insight from someone with domain knowledge is a val‐
uable resource to put a probabilistic model into the proper context.

Continuing with our bird-watching thoughts, human experience
might also inform you that some sequential events tend to be related.
If you see one pelican fly by, it’s reasonable to expect several more
almost immediately because they often fly in a sort of squadron. But
you would not expect a couple of hundred pelicans in rapid succession.
This knowledge suggests to us not only that sequential measurements
may not be entirely independent—an important concept—but also

Human Insight Helps | 11

that models may require several levels of complexity to be really ac‐
curate predictions of real-world events.

So the first step in anomaly detection—using your model to discover
what is normal—also requires human insight both to structure the
model mathematically as well as to interpret what aspect of a pattern
is of interest and whether or not it represents a reasonable view of a
normal situation.

In building a machine-learning model for anomaly detection, you
have to identify the best choice of data, figure out how to put it into a
form acceptable to your algorithm and then acquire enough data for
training your model. In other words you will use data initially to let
the model discover patterns that you will then need to interpret in
order to determine the baseline or normal situation. This may require
a number of adjustments to the algorithm you use before you end up
with something that makes sense. The more you know about the sit‐
uation being investigated, the more easily and accurately you can de‐
cide when your model has achieved the first goal of anomaly detection
by finding what is normal.

Finding Anomalies
A second level of human insight is needed once you’ve established
what is normal and begin to look for what is anomalous. For our EKG
example, anomalous behavior is not the fact that there are spikes but
the observation that their frequency fluctuates during an episode of
abnormal heart behavior, as seen in the data displayed in Figure 2-3.

12 | Chapter 2: The Shape of Anomaly Detection

Figure 2-3. Anomalies in the frequency of the heartbeat show up as
unevenly spaced spikes such as those between approximately 1206 and
1210 seconds in this EKG.

Figures 2-2 and 2-3 just illustrate the point that the basis for anomaly
detection is to establish what is normal and then compare new events
to that pattern or model. This two-step process can be done in a variety
of ways from very simple models of fairly straightforward systems that
use an assigned threshold to send alerts for potential anomalies (as
described in Chapter 3) or more sophisticated models that are adaptive
and can deal with complex or shifting situations (as explained in
Chapters 4 through 6. In all of these cases, you are comparing observed
behavior to what has been defined as normal.

Back to our bird-watching example: when the observations show ei‐
ther a big decrease in the overall number of common birds or the
appearance of a large number of very rare birds, your model should
flag the change as being anomalous.

Once again, if you like math, this description of
anomalies is for you…
Thinking in terms of a probabilistic model, very rare, anomalous
events will be assigned a much lower probability value than normal
events during training. As a result, during an anomaly when we ob‐
serve these rare events, the anomaly score will be large precisely be‐
cause our estimate of their probability is very low.

Because an anomalous event has a lower probability value than those
usually observed, the anomaly score, which is the negative log of the

Finding Anomalies | 13

probability value, –log πi, will be larger, possibly much larger than
usual. In other words, the anomaly score will be farther from the ideal
maximum of zero. This increase suggests that our model’s estimation
of normal is less well matched to actual anomalous events—thus high‐
lighting the occurrence of outliers.

Take-Home Lesson: Key Steps in Anomaly Detection
The overall message here is broadly applicable to different types of
anomaly detection, regardless of the complexity of the system and the
choice of algorithms that are used. These steps form a general guide‐
line to goals when you are trying to build your own anomaly detector.
Ask yourself these questions:

• What is normal?
• What will you measure to identify things that are “far” from

normal?
• How far is “far”, if something is to be considered anomalous?

A Simple Approach: Threshold Models
You must experiment to determine at what sensitivity you want your
model to flag data as anomalous. If it is set too sensitively, random
noise will get flagged, and with huge amounts of data, it will be essen‐
tially impossible to find anything useful beyond all the noise.

Even if you’ve adjusted the sensitivity to a coarser resolution such that
your model is automatically flagging actual outliers, you still have a
choice to make about the level of detection that is useful to you. There
always are trade-offs between finding everything that is out of the or‐
dinary and getting alarms at a rate for which you can handle making
a response. These considerations, as well as a useful new way to set a
good threshold, are the topic of Chapter 3.

14 | Chapter 2: The Shape of Anomaly Detection

CHAPTER 3

Using t-Digest for Threshold
Automation

The most common form of anomaly detector in use today is a
manually-set threshold alarm to send an alert for possible anomalies.
Input to such an alarm is a numerical measurement of some kind. The
basic idea in this case is that whenever this measurement exceeds a
threshold that you have set, possibly for a certain amount of time, an
alarm is sounded.

This simple approach can work fairly well if the system being observed
has a simple pattern of well-understood measurements, and the num‐
ber of different kinds measurements is not enormous. But this ap‐
proach can become quite difficult to carry out effectively if you have
a large number of measurements with behaviors that you do not un‐
derstand very well. As it turns out, that situation—a large number of
measurements in a system that is either unpredictable or otherwise
not well defined—is commonly encountered in real-world settings of
interest. That’s one reason we need some new ways to approach anom‐
aly detection.

A good first step in improving these systems is to change the way that
the threshold is set. Let’s think about the goal for a threshold and how
it can be optimized. Any particular value for a threshold will detect
some fraction of the anomalies that you are trying to find, and if you
have chosen the threshold well, that fraction of anomalies hopefully
will be large. At the same time, this threshold most likely will some‐
times trigger false alarms, in cases in which normal noise in the data
is detected erroneously as being a true anomaly. Once again, if the

15

system is built well and an appropriate threshold was chosen, the
number of false alarms will be small. This trade-off between catching
anomalies but trying to avoid too many false positives is what you are
trying to optimize as you set the threshold.

If you are trying to detect anomalous positive deviations of the meas‐
urement you are collecting, then increasing the threshold will decrease
the fraction of measurements that are false alarms (the false positive
rate) but will also decrease the fraction of true anomalies we find (the
true positive rate). Conversely, decreasing the threshold will have the
opposite effect, finding more of the anomalies we are targeting but at
the price of an increase in false positives. This decision is a trade-off
between the two kinds of error: false positives and false negatives. The
idea of these trade-offs is illustrated in Figure 3-1.

Figure 3-1. The idea of trade-offs in setting the threshold for alarm.
The gray line is noisy but non-anomalous data. The black horizontal
line shows the mean of the data—a crude model. The three circles are
true anomalies. Where would you set a threshold to detect the anoma‐
lies without excessive false positives?

You could set a threshold to get a perfect record for catching anomalies,
but then you’ve created a large and undesirable side effect of also get‐
ting a lot of what you don’t want (false positives). This is a standard
challenge in risk management that applies to much more than just
monitoring systems—it also applies to many societal decisions.

16 | Chapter 3: Using t-Digest for Threshold Automation

The Philosophy Behind Setting the Threshold
The question you face is, “How many false positives are acceptable and
what is the cost of possibly missing some real anomalies?” Roughly
speaking, people fall into two broad groups in their goals for optimiz‐
ing the threshold. These strategies are depicted in Figure 3-2. On one
side are those for whom the major objective is to detect a very large
fraction of anomalies because the penalty for missing any of them is
great. An example might be a medical life-support device for which
very sensitive detection of anomalies is important.

Figure 3-2. Goals for anomaly detection vary, and that in turn affects
how you select a threshold. Anomaly-driven situations are those in
which you have a required rate of detection and must estimate the
number of false alarms in order to budget for that. Budget-driven
anomaly detection occurs when you have a limited budget for re‐
sponse, and you must determine how many anomalies and false
alarms you can handle within that budget, setting the threshold to
match.

You could set the anomaly detection threshold very low in order to
catch most or all anomalies, but this can result in a high rate of false
positives. Dealing with false alarms also has a cost, however. You must
have sufficient resources to respond to the alarms and determine
whether or not they are false positives. Too many false alarms becomes
a distraction, wastes time, and potentially overwhelms the human who
needs to respond. This person could become habituated to the alarm,
raising the danger that they will not respond appropriately to a true

The Philosophy Behind Setting the Threshold | 17

anomaly—it’s a case of the danger of “crying wolf ” too often. Even so,
in a system with a high penalty for missed anomalies, you still have to
choose the threshold to reduce the rate of missed anomalies to the
required level. Given that threshold, you then calculate what you must
budget in time and expense to handle anomalies and the many false
positives you are likely to have.

In contrast is the budget-driven philosophy in which you have to work
with a fixed budget for dealing with all alarms. In this case, your budget
drives your choice of threshold, even if it means missing some true
anomalies. For a whimsical example, consider measurements in a
chocolate candy factory. The measurement in question might be the
input and output amount of chocolate, or how many chocolate nuggets
are dropped in each bag, or the ratio of chocolate and peanuts for each
piece of candy. The anomalies you would like to detect might include
temperature fluctuations of the melted chocolate, problems with vis‐
cosity, or errors in the swing of a mechanical arm that extrudes a
stream of chocolate. While it might seem heartbreaking to your loyal
customers to end up with a charred taste because the system overhea‐
ted the chocolate one day, it’s not life-threatening. In this case, you are
likely to be driven by a trade-off of the cost of dealing with alarms to
alert you to fluctuations versus the potential threat to producing a
batch of candy that will disappoint your customers.

Ideally, in general, you want to have as high a true positive rate as you
can, but you also have a maximum number of false positives that you
can afford to deal with. You must therefore choose your threshold to
control the total alarms in a given time period. Theoretically, you
should be able to set this threshold by examining the distribution of
the measurement under normal conditions and picking a value of the
threshold to give the desired rate of alarms. This assumption is an
especially good fit for the budget-driven situations.

As an example, suppose that we have a measurement that is made once
per second, and we are willing to investigate three false positives per
month. We will have about 3 million measurements per month, so we
can accept about one false positive per million measurements. In that
case, the threshold should be set to roughly the 99.9999th percentile.
That action may sound easy, but incrementally calculating an extreme
quantile accurately with limited memory can be difficult, especially if
you need to do this for a large number of related situations. In the next
section, we will describe how to use a new algorithm, t-digest, to es‐
timate extreme quantiles on large data sets in an online fashion.

18 | Chapter 3: Using t-Digest for Threshold Automation

Another consideration is that, in practice, successive measurements
are often highly correlated. (Remember the squadron of pelicans we
mentioned in the analogy in Chapter 2?) When measurements exhibit
such correlations, we may want to consider short batches of inputs
instead of individual points when setting the threshold. In the example
above with one measurement per second, we might actually only have
the equivalent of one independent measurement every 5 minutes and
thus would consider 5-minute batches instead of individual points. In
that case, to get the desired 3 alarms per month, we want to allow one
5-minute batch or about 300 measurements above the threshold per
million measurements, and the threshold should be set to the 99.97th
percentile. The measurements that exceed the threshold will occur in
bunches due to correlation, and the total number of alerts we have to
respond to will be much less than the number of measurements above
the threshold.

In either case, percentiles are a very natural scale for talking about the
threshold setting. Translating a percentile into a threshold can be
tricky with limited memory and time, however. That’s where t-digest
can help.

Using t-Digest for Accurate Calculation of
Extreme Quantiles
The data structure known as t-digest was developed by one of the
authors, Ted Dunning, as a way to accurately estimate extreme quan‐
tiles for very large data sets with limited memory use. This capability
makes t-digest particularly useful for selecting a good threshold for
anomaly detection. The t-digest algorithm is available in Apache Ma‐
hout as part of the Mahout math library. It’s also available as open
source at https://github.com/tdunning/t-digest and has been published
to Maven Central. The t-digest algorithm has been picked up by several
other projects, including Elasticsearch and stream-lib.

One of the advantages of t-digest is accuracy, especially for extreme
quantiles; another is making the problem less cumbersome by re‐
quiring limited amounts of memory. Instead of having to sort a large
number of samples to estimate a quantile of interest, an incoming sig‐
nal can be analyzed in an online fashion using a t-digest to find the
threshold corresponding to any quantile. This process is shown in
Figure 3-3. The threshold is selected in terms of which percentile of
the distribution of the incoming signal is desired. In this case, a thresh‐

Using t-Digest for Accurate Calculation of Extreme Quantiles | 19

https://github.com/tdunning/t-digest

old of 99.97% has been selected. To alert us of negative deviations, the
sign of the comparison would be reversed, and a low percentile would
be selected instead of a high one.

Figure 3-3. Using the t-digest to set a threshold. The incoming signal
(x) is routed to the t-digest to estimate the threshold (h) as a quantile.
New incoming data is compared to this threshold.

Issues with Simple Thresholds
The basic idea behind any anomaly detector is that we are building a
model of the input to the detector—our estimation of “normal”—
looking for deviations from that model. The model for the threshold-
based anomaly detector is based on an assumption that the incoming
signal has a nearly stationary and simple distribution so that a partic‐
ular percentile will always be at a particular point. If this assumption
doesn’t hold, and often it does not, then the threshold as computed by
the t-digest will result in the rate of true and false positives to vary as
the distribution of the signal changes. Figure 3-4 shows an example of
a signal that exhibits this problem.

20 | Chapter 3: Using t-Digest for Threshold Automation

Figure 3-4. A non-stationary distribution can make it hard to see some
anomalies using a simple threshold.

With any kind of simple threshold detector, the anomaly at A in
Figure 3-4 will be detected easily, but the anomaly at B will not, even
though they are both much larger than the noise level.

Clearly, we need a more nuanced and adaptive kind of model to handle
this sort of problem. We will explore how to do this in the next chapter.

Issues with Simple Thresholds | 21

CHAPTER 4

More Complex, Adaptive Models

As we saw in the previous chapter, it is relatively easy to build the very
simplest anomaly detector that looks for deviations from an ideal val‐
ue. Tools like the t-digest can help by analyzing historical data to ac‐
curately find a good threshold. Statistically, such a system is building
a model of the input data that describes the data as a constant value
with some additive noise. For a system like most of the ones we have
seen so far, the model is nearly trivial, but it is a model nonetheless.

But what about the more complicated situations, such as the one
shown at the end of the last chapter in Figure 3-3? Systems that are
not stationary or that have complicated patterns even when they are
roughly periodic require something more than a simple threshold de‐
tector. And what happens when conditions change?

What is needed is an adaptive machine-learning model for anomaly
detection. In Chapter 2 we discussed the idea of a probabilistic model
that is trained using histories of past events to estimate their likelihood
of occurrence as a way to describe what is normal. This type of model
is adaptive: as small fluctuations occur in the majority of events, our
model can adjust its view of “normal” accordingly. In other words, it
adapts to reasonable variations. Back to our bird-watching analogy, if
our bird detector is looking for unusual species (“accidentals” in bird-
watching jargon) or significant and possibly catastrophic changes in
the population of normal species, we might want our model to be able
to adjust to small changes in the local population that respond to slight
shifts in weather conditions, availability of seeds and water, or exces‐
sive activity of the neighbor’s cat. We want our model to be adaptive.

23

Conceptually, it is relatively easy to imagine extending the constant
threshold model of Chapter 3 by allowing the mean value to vary and
then set all thresholds relative to that mean value. Statistically speak‐
ing, what we are doing is describing our input as a time-varying base
value combined with additive noise that has constant distribution and
zero mean. By building a model of exactly how we expect that base
value to vary, we can build an anomaly detector that produces an alert
whenever the input behaves sufficiently differently from what is
expected.

Let’s take a look at the EKG signal that we talked about in Chapter 2
of this report. The pulses in the EKG that record the heartbeats of the
patient being measured are each highly similar to one another. In fact,
substantial changes in the shape of the waveforms in the EKG often
indicate either some sort of physiological problem or equipment mal‐
function. So the problem of anomaly detection in an EKG can be
viewed as the problem of how to build a model of what heartbeats
should look like, and then how to compare the observed heartbeats to
this ideal model. If the model is a good one—in other words a good
estimate of normal heart behavior—then a measurement of error for
observed behavior relative to this ideal model will highlight anomalous
behavior. If the magnitude of the error stands out, it may be a flag that
highlights irregular heartbeats or a failure in the monitor. This ap‐
proach can work to find anomalies in a variety of situations, not just
for an EKG.

To understand this mathematically (just stay with us), think back to
Chapter 2, in which we stated that anomaly detection involves mod‐
eling what is normal, looking for events that lie far from normal, and
having to decide how to determine that. In the type of example de‐
scribed in this current chapter, we have a continuous measurement,
and at any point in time, we have a single value. The probabilistic
model for “normal” in this situation involves a sum of a base value plus
random noise. We can estimate the base value using our model, and
subtracting this from our observational input data leaves the random
noise, which is our reconstruction error. According to our model, the
error noise has an average value of zero and stationary distribution.
When the remaining noise is large, we have an anomaly, and t-digest
can decide what we should consider a large value of noise to be.

24 | Chapter 4: More Complex, Adaptive Models

Windows and Clusters
We still have the challenge of finding an approachable, practical way
to model normal for a very complicated curve such as the EKG. To do
this, we are going to turn to a type of machine learning known as deep
learning, at least in an introductory way. Here’s how.

Deep learning involves letting a system learn in several layers, in order
to deal with large and complicated problems in approachable steps.
With a nod toward this approach, we’ve found a simple way to do this
for curves such as the EKG that have repeated components separated
in time rather than superposed. We take advantage of the repetitive
and separated nature of an EKG curve in order to accurately model its
complicated shape.

Figure 4-1 shows an expanded view of two heartbeats from an EKG
signal. Each heartbeat consists of several phases or pulses that corre‐
spond to electrical activity in the heart. The first part of the heartbeat
is the P wave, followed by the QRS complex, or group of pulses, and
then the T wave. The recording shown here was made with a portable
recording device and doesn’t show all of the detail in the QRS complex,
nor is the U wave visible just after the T wave. The thing to notice is
that each wave is strikingly similar from heartbeat to heartbeat. That
heart is beating in a normal pattern.

To build a model that uses this similarity, we use a mathematical trick
called windowing. It’s a way of dealing with the regular but complex
patterns when you need to build a model that can accurately predict
them. This method involves extracting short sequences of the original
signal in such a way that that the short sequences can be added back
together to re-create the original signal.

Windows and Clusters | 25

Figure 4-1. An EKG signal is comprised of components that are com‐
plex but highly repetitive.

The first step of our analysis is to do windowing to break up the larger
pattern into small components. Figure 4-2 shows how the EKG for
these two heartbeats are broken up into a sequence of nine overlapping
short signals. As you can see, several of these signals are similar to each
other. This similarity can be exploited to build a heartbeat model by
aligning and clustering all of the short signals observed in a long re‐
cording. In this example, the clustering was done using a ball k-means
algorithm from the Apache Mahout library. We chose this algorithm
because our sample data here is not huge, so we could do this as an in-
memory operation. With larger data sets, we might have done the
clustering with a different algorithm, such as streaming k-means, also
from Mahout.

The clustering operation essentially builds a catalog of these shapes so
that the original signal can be encoded by simply recording which
shape from the catalog is used in each time window, along with a scal‐
ing factor for each shape.

26 | Chapter 4: More Complex, Adaptive Models

Figure 4-2. Windowing decomposes the original signal into short seg‐
ments that can be added together to reconstruct the original signal.

By looking at a long time series of data from an EKG, you can construct
a dictionary of component shapes that are typical for normal heart be‐
havior. Figure 4-3 shows a selection of 64 out of 400 shapes from a
dictionary constructed based on several hours of a real EKG recording.
These shapes clearly show some of the distinctive patterns found in
EKG recordings.

Windows and Clusters | 27

Figure 4-3. Dictionary of component shapes. Clustering finds the most
commonly used signal shapes for reconstructing a representation of
normal heartbeats.

Matches with the Windowed Reconstruction:
Normal Function
Now let’s see what happens when this technique is applied to a new
EKG signal. Remember, the goal here is to build a model of an observed
signal, compare it to the ideal model, and note the level of error be‐
tween the two. We assume that the shapes used as components (the
dictionary of shapes shown in Figure 4-3) are accurate depictions of
a normal signal. Given that, a low level of errors in the comparison
between the re-constructed signal and the ideal suggests that the ob‐
served signal is close to normal. In contrast, a large error points to a
mismatch. This is not a test of the reconstruction method but rather a
test of the observed signal. A mismatch indicates an abnormal signal,
and thus an anomaly in heart function.

Figure 4-4 shows a reconstruction of an EKG signal. The top trace is
the original signal, the middle one is the reconstructed signal, and the
bottom trace shows the difference between the first two. This last sig‐
nal shows how well the reconstruction encodes the original signal and
is called the reconstruction error.

28 | Chapter 4: More Complex, Adaptive Models

Figure 4-4. Reconstruction of normal pattern for heartbeats using win‐
dowing and clustering. The reconstruction error (bottom trace) for an
EKG signal (top trace) is computed by subtracting the reconstructed
signal (middle trace) from the original. Notice that the reconstruction
error (bottom trace) is small and relatively uniform.

As long as the original signal looks very much like the signals that were
used to create the shape dictionary, the reconstruction will be very
good, and the reconstruction error will be small. The dictionary is thus
a model of what EKG signals can look like, and the reconstruction
error represents the degree to which the signal being reconstructed
looks like a heartbeat. A large reconstruction error occurs when the
input does not look much like a heartbeat (or, in other words, is
anomalous).

Note in Figure 4-4 how the reconstruction error has a fixed baseline.
This fact suggests that we can apply a thresholding anomaly detector
as described in Chapter 3 to the reconstruction error to get a complete
anomaly detector. Figure 4-5 shows a block diagram of an anomaly
detector built based on this idea.

Matches with the Windowed Reconstruction: Normal Function | 29

Figure 4-5. Signal reconstruction error from an auto-encoder can be
used to find anomalies in a complex signal. Input signal x is analyzed
using an encoder, which reconstructs x using a model in the form of a
shape dictionary to produce a reconstructed signal x’. The difference,
x-x', is the reconstruction error δ. Comparing δ to a threshold h gives
us an alarm signal when the encoder cannot reconstruct x accurately
as indicated by a large reconstruction error δ.

Essentially what is happening here is that the encoder can only repro‐
duce very specific kinds of signals. The encoder is used to reduce the
complex input signal to a reconstruction error, which is large when‐
ever the input isn’t the kind of signal the encoder can handle. This
reconstruction error is just the sort of stationary signal that is appro‐
priate for use with the methods described in Chapter 3, and so we can
use the t-digest on the reconstruction error to look for anomalies.

Mismatches with the Windowed
Reconstruction: Anomalous Function
That this approach can find interesting anomalies is shown in
Figure 4-6, where you can see a spike in the reconstruction error just
after 101 seconds. It is clear that the input signal (top trace) is not
faithfully rendered by the reconstruction, but at this scale, it is hard to
see exactly why.

30 | Chapter 4: More Complex, Adaptive Models

Figure 4-6. Reconstruction for a heart signal displaying anomalous be‐
havior. Top trace is the original EKG signal. The bottom trace shows
the reconstruction error that is computed by subtracting the recon‐
structed signal (middle trace) from the original. Notice the spike in the
error at just past 101 seconds. That error spike indicates that the re‐
construction shown in the middle panel was unable to reproduce that
section of the original signal shown at the top.

If you expand the time scale, however, it is easy to see what is hap‐
pening. Figure 4-7 shows that at about 101.25 seconds, the QRS com‐
plex in the heartbeat is actually a double pulse. This double pulse is
very different from anything that appears in a recording of a normal
heartbeat, and that means that there isn’t a shape in the dictionary that
can be used to reconstruct this signal.

Mismatches with the Windowed Reconstruction: Anomalous Function | 31

Figure 4-7. Expanded view of the anomalous heartbeat. The anomaly
(indicated by arrows) was detected by finding an unusually large re‐
construction error.

This kind of anomaly detector can’t say what the anomaly is. All it can
do is tell us that something unusual has happened. Expert human
judgment is required for the interpretation of the physiological mean‐
ing of this anomaly, but having a system that can draw attention to
where human judgment should best be applied helps if only by avoid‐
ing fatigue.

Other systems can make use of this general model-based signal re‐
construction technique. The signal doesn’t have to be as perfectly pe‐
riodic for this to work, and it can involve multidimensional inputs
instead of just a single signal. The key is that there is a model that can
encode the input very concisely. You can find the code and data used
in this example on GitHub.

A Powerful But Simple Technique
Note that the model used here to encode the EKG signal is fairly simple.
The technique used to produce this model gives surprisingly good
results given its low level of complexity. It can be used to analyze signals
in a variety of situations including sound, vibration, or flow, such as
what might be encountered in manufacturing or other industrial set‐

32 | Chapter 4: More Complex, Adaptive Models

https://github.com/tdunning/anomaly-detection

tings. Not all signals can be accurately analyzed with a model as simple
as the one used here, particularly if the fundamental patterns are su‐
perposed as opposed to separated, as with the EKG. Such superposed
signals may require a more elaborate model. Even the EKG signal re‐
quires a fancier model if we want to not only see the shape of the
individual heartbeats but also features such as irregular heartbeats.
One approach for building a more elaborate model is to use deep
learning to build a reconstruction model that understands a waveform
on both short and long time scales. The model shown here can be
extended to a form of deep learning by recursively clustering the
groups of cluster weights derived by the model described here.

Regardless, however, of the details of the model itself, the architecture
shown here will still work for inputs roughly like this one or even
inputs that consist of many related measurements.

The EKG model we discussed was an example of a system with a con‐
tinuous signal having a single value at any point in time. A
reconstruction-model approach can also be used for a different type
of system, one with multiple measurements being made at a single
point in time. An example of a multidimensional system like this is a
community water supply system. With the increasing use of sensors
in such systems that report many different system parameters, you
might encounter thousands of measurements for a single point in time.
These measurements could include flow or pressure at multiple loca‐
tions in the system, or depth measurements for reservoirs. Although
this type of system has a huge number of data points at any single time
stamp, it does not exhibit the complex dynamics of the heartbeat/EKG
example. To make a probabilistic model of such a multidimensional
water system, you might use a fairly sophisticated approach such as
neural nets or a physics-based model, but for anomaly detection, you
can still use a reconstruction error–based technique.

A Powerful But Simple Technique | 33

Looking Toward Modeling More Problematic
Inputs
Where this approach really begins to break down a bit is with inputs
that are not based on a measurement of a value such as voltage, pres‐
sure, or flow. A good example of such a problematic input can be found
in the log files from a website. In that case, the input consists of events
that have a time of occurrence and some kind of label. Even though
the methods described in this chapter can’t be applied verbatim, the
basic idea of a probabilistic model is still the key to good anomaly
detection. The use of an adaptive, probabilistic model for e-commerce
log files is the topic of the next chapter.

34 | Chapter 4: More Complex, Adaptive Models

CHAPTER 5

Anomalies in Sporadic Events

The input signals in the examples discussed in previous chapters have
all been values sampled at uniform intervals. Such signals make it easy
to talk about a reconstructed value computed by a model and the dif‐
ference between that value and the original input the reconstruction
error.

In practice, however, there are other forms of data that are important
to process for anomaly detection. One important class of such data is
known as an event stream and is usually derived from log files of one
sort or another. A key characteristic of these log files is that they record
events that occur at irregular intervals.

It is also fairly common for these events to be associated with a sym‐
bolic value such as your IP address and the URL of a web page you
visit if page views are the input of interest. Another input might be
stock trades, for which the symbolic values could include the stock
sign and be combined with the trades, price, and number of shares.
Other examples of this type of input are e-commerce purchases or
Internet packets. In each of these cases, we want to be able to detect
anomalous activity in these event streams, such as changes in the rate
or geolocation of web traffic, or perhaps the number of stock trades in
particular time periods in stock markets. Sometimes the anomaly of
interest is the absence of activity during a particular time interval, and
that can be a challenge for anomaly detection models to handle.

Because these events occur at irregular times and because they have
symbolic values rather than numerical values, it is hard to imagine
how to use the techniques from the previous chapters to find anoma‐
lies in event streams. As we will see, however, there are fundamental

35

unifying principles that let us extend the previous methods to handle
event streams.

Counts Don’t Work Well
You might think that doing anomaly detection on event streams is as
easy as simply counting how many events occur in successive fixed-
length time intervals and then considering that count as a measure‐
ment to be used with the approaches described earlier in this report.
There are, however, several problems with this count-based approach.

The first problem occurs because counts have inherent variation due
to statistical fluctuations. This variation can make it hard to detect any
small or moderate changes in system behavior without long accumu‐
lation periods. In order to detect outages reliably, we need the average
counts in each period to be fairly large. We can fix this problem by
making the counting interval longer to accumulate sufficient counts
in each interval.

But correcting this first problem creates a second problem. Waiting
long enough to accumulate a large count makes it essentially impos‐
sible to detect anomalies quickly unless the event rate is really large.
These ideas are illustrated in Figure 5-1.

Look at the left panel in Figure 5-1, which shows frequent sampling
with a short time interval. Although the rate of events being counted
increases by 20% for intervals from about half to three-quarters
through the 200-minute observation period, this fluctuation is hard
to recognize buried in the large statistical variation inherent in small
counts.

36 | Chapter 5: Anomalies in Sporadic Events

Figure 5-1. Substantial changes in rate are not easily visible for count
data with relatively low rate and short counting intervals. Left and
right panels show the same data sampled over a total of 200 minutes.
Each data point in the left panel shows the sum of counts for that one-
minute interval. In the right panel, the sampling interval was increased
to 10 minutes, so there are fewer total intervals, and the count for each
one is 10 times larger. Notice that the fluctuation seen at about half to
three quarters of the way through the observation period is much eas‐
ier to see in the right panel with its longer counting intervals.

In the righthand panel, in contrast, the shift is distinctly visible, but
only at the cost of increasing the collection periods by a factor of 10.
While this makes the change visible, it also increases the time required
to detect any change, even a catastrophic one, and thus limits your
ability to respond quickly. In short, this overall situation presents a
challenging signal-to-noise problem. That’s why counts per time in‐
terval is not a good measurement to use when modeling systems that
have sporadic events.

In some systems, events arrive at such a high rate that you can have
both large counts and short intervals. It’s acceptable to use counts as
the measure for modeling in these high-rate systems, and that makes
it easy to process them using methods described in our previous chap‐
ters. Many systems aren’t like this, however, and summarizing the
event arrival data as counts leads to an unacceptable choice between
detecting small changes and responding quickly to large changes.

Counts Don’t Work Well | 37

The solution to this problem is to look at an event stream as it is, as
events with arrival times, rather than trying to convert it into periodic
counts.

Arrival Times Are the Key
In sporadic event systems, the varying time between events does
present a challenge, but the situation improves if you use arrival time
rather than counts as what you measure. Before, we asked, “What is
the count for a fixed-time interval?” Now we can turn that around and
ask, “What is the time interval for a fixed count?”

Even though we’ve changed which measurement we will use for our
model, the questions we want to ask about our sporadic event system
are really the same. What is the rate of events? Is a new pattern showing
up? Did everything stop?

Let’s consider the problem of how to know if our event stream has
stopped—in other words, how to tell the difference between irregular
time intervals (normal) and the cessation of events (anomaly). The
key observation when things cease is that the time since the last event
increases without bounds. In normal circumstances, the time since the
last event may be irregular, but it is not unbounded. We can approach
this problem by setting an alarm based on some time period beyond
what is reasonable to expect for the next event. If an event does occur
before the alarm, we simply reset the alarm into the future. Using the
style of rolling alarms, we still must decide what should be our refer‐
ence point for the alarms and how best to estimate when the next event
is expected so that we know when to begin to worry if nothing shows
up. Figure 5-2 gives you a simple framework to think about a couple
of choices for one of those issues: how to chose a useful reference point.

If you want to have the quickest ability to respond to a problem, your
reference point should be based on the time of the last event. This
approach is good if we are trying to spot a complete cessation, but
normal variation in the time between events (the noise in our meas‐
urement) makes it hard to spot a less-than-catastrophic change in rate
of events using the last event as our reference.

To detect a change in rate, you need to smooth out the noise by looking
at more events as your reference when setting the alarm. You do this
by choosing a previous event that was several events ago (nth event
ago) as the reference. You are still setting an alarm based on watching

38 | Chapter 5: Anomalies in Sporadic Events

for the presence or absence of the next event, but your estimate for it
is across more events and therefore has a larger signal-to-noise ratio.
If you want to detect the rate increasing, you set a minimum time; for
a decrease in rate, you set a maximum time.

Figure 5-2. The key parameter to model sporadic events is the arrival
time. You can consider the time to the last event for quickest response
or to some previous event that you choose for the most accuracy, which
is helpful in systems with fairly low rate of events.

Keep in mind that there are two parts of systems using anomaly de‐
tection. One is the alert system, such as a dashboard or other possibly
pre-existing application to set alerts and send alarms. The other is a
measurement system that you are building, your program to calculate
normal rate and record when each event arrives. You might arrange
to have rolling alarms driven by having the measurement system in
charge: it sets the time interval for alarms and then measures when a
new arrival occurs in order to reset each alarm. Or you could design
a system with the alert center in charge: periodically it generates a
query to ask how long it was to a reference event (last or earlier) and
is that OK? Either way, the choice between quickest response time
using last event as a reference or best accuracy using an nth event still
applies.

All of this discussion about deadlines for the next event pre-supposes
that we know what the rate should be. We must have a way to estimate
that rate, usually based on historic files. How we do that differs with
different sporadic event systems. Some are fairly challenging to esti‐
mate, and in some cases we can use a clever simplification as shown
in a later section.

Arrival Times Are the Key | 39

And Now with the Math…
The way that we searched for anomalies in the previous chapters was
to build a model to reconstruct a signal and then look at the recon‐
struction error. Large errors signaled the presence of anomalies. Math‐
ematically speaking, that method is very similar to constructing a
model composed of two parts: the reconstruction model and an error
process. Commonly, this error process is assumed to be distributed
according to the normal distribution. With that assumption, the log
of the probability of the reconstruction is very nearly proportional to
the square of the reconstruction error.

For independent events that occur at random times, squared error
doesn’t work, and it is common to describe the distribution of these
events in terms of a variable rate Poisson process. A Poisson process
describes events that occur independently in time at a fixed rate. This
reasoning can be extended to allow the rate to vary. The useful part
about this kind of model for anomaly detection is that the log of the
probability of the time between events is proportional to the time be‐
tween events multiplied by the rate. If we have a model for the rate
itself, then the time between events can serve just as the reconstruction
error did in previous chapters. We can use it to identify when the rate
predicted by our model varies significantly from the actual observed
rate and thus flag an anomaly.

Figure 5-3 shows an example of how such a model might be built for
an event source that exhibits predictable variation in traffic. Remem‐
ber that in our approach, we are asking the question, “What is the time
interval for a fixed count?”. In our anomaly detection model, the con‐
stant is the interval from now back to a certain number of previous
events that we designate, and our variable is the length of time that
interval takes. We use the parameter n to designate which previous
event bounds our interval. For example, if n=1, the interval used is the
time since the most recent event. When we set n>1, we get the time
since the nth earlier event. When we use n=1, we get the fastest re‐
sponse. With n>1, we can see smaller rate changes, but there is a bit
more delay before the change can be seen.

40 | Chapter 5: Anomalies in Sporadic Events

Figure 5-3. Event arrival time of the most recent event (ti) is used by
the rate predictor to update the rate history and to compute an esti‐
mate of current event rate (λ). This event rate is multiplied by the time
from now (at time t) back to the nth most recent event to compute the
analog of the reconstruction error (δ). An alarm is triggered when δ
exceeds the threshold (h). Note that when n=1, the expression (t– ti–n
+1) becomes t–ti , the time to the most recent event.

The key to making an anomaly detector of this sort work well is to
build a good rate predictor. Exactly how that is done depends very
much on the system you are analyzing. The next section shows how
you can do this for a website.

Event Rate in a Worked Example: Website
Traffic Prediction
Here’s a handy practical machine learning method that makes it easy
to predict events and discover anomalies for website traffic as opposed
to other types of sporadic event systems. A consumer-facing website
typically has traffic patterns that repeat each day and each week, es‐
pecially if the majority of the audience is located within one or a few
time zones. Traffic goes up when a majority of the audience for the site
is awake and browsing and goes down when they are asleep. This
roughly repeated variation with time is called seasonality by econo‐
metricians, even if the variation occurs on a daily or weekly basis rather
than an annual basis. Almost all websites show this sort of seasonality
pattern. The exact nature of the traffic patterns varies, however. Some
sites have more traffic on weekends and some have more traffic during
the week. In any case, the pattern itself is often amazingly stable and

Event Rate in a Worked Example: Website Traffic Prediction | 41

thus can be exploited in building a traffic-rate predictor. As we saw
before, an event rate is the key element in an event anomaly detector;
once that is working, it is relatively easy to integrate the traffic model
into the system shown in Figure 5-3.

This section shows how you can exploit daily and weekly seasonality
to get traffic-rate prediction accurate enough for good anomaly de‐
tection. The example here deals with Wikipedia traffic logs, but the
patterns for e-commerce sites are very similar. The model here uses
combinations of traffic rates from prior hours to model the current
traffic rate. Figure 5-4 shows the hourly number of visits to the English
language main page for Wikipedia for the month of November 2008.
The graph shows hourly visits as well as hourly visits delayed by exactly
a week so that we can look at how closely the traffic pattern repeats
week to week. This particular month starts on a weekend at A. One
week later at B, we see that the weekend pattern is almost exactly re‐
peated. In fact, it is a bit hard to see the delayed graph. During the next
week, the match is a little bit less precise. At C there is an anomaly in
the recorded traffic, probably due to a data-handling bug rather than
a real traffic spike. During the week of the 17th, we see traffic continue
at a lower level than the previous week, which makes sense because
the end of the month of November is when the major US holiday
Thanksgiving occurs and some people are probably leaving work early.
You can see the holiday itself at D, as two weekdays have traffic patterns
more like a Saturday than a Thursday and Friday. If you look closely,
you can even see when people start eating Thanksgiving day dinner
(or start to watch the football game) on November 28th.

42 | Chapter 5: Anomalies in Sporadic Events

Figure 5-4. Hourly traffic for Wikipedia main page for the month of
November, 2008. The dark line is the actual traffic. The light gray line
is the traffic delayed by a week.

What this shows us is that simply using the traffic rate from exactly one
week ago can give a remarkably precise estimate of what current traffic
levels should be, but holidays can degrade accuracy. If you want a more
accurate estimate, you may want to build a real regression model with
additional predictor variables like lagged values of hourly data. It is
typically easiest to regress on the log of traffic rather than try to predict
the exact value of current traffic since this allows the regression to be
done using linear methods.

With one or another of these techniques, it is usually possible to build
a traffic model for a high-traffic website that is accurate to within about
5% of the actual traffic. Sometimes the simple week-delayed model
suffices, and sometimes you may require the slightly fancier kind of
regression model, but one or the other should suffice. For websites
with lower traffic levels, it is harder to build such an accurate model,
but the same techniques achieve sufficient accuracy to build a useful
traffic anomaly monitor.

Extreme Seasonality Effects
The simple week-delay model is not sufficient during periods of ex‐
treme variation related to seasonality, such as major holidays. To show
this with our Wikipedia example, we asked what happens for page

Extreme Seasonality Effects | 43

views related to a seasonal topic. Figure 5-5 shows the hourly traffic
for the Wikipedia page about Christmas for the last 45 days of 2008.
The limitations of the simple week-delay model are very clear.

Figure 5-5. Traffic for the Wikipedia page on Christmas for the last
part of 2008. The dark line is the actual traffic. One week delayed traf‐
fic is in gray.

During the last week of November, traffic predictions are still reason‐
ably good, but the first week in December shows a dramatic increase
in traffic with the simple delay model underestimating peak traffic by
nearly 2:1. Interestingly, the second and third weeks of December have
better prediction. During the week of Christmas itself, the delay model
falls apart again. The week after Christmas, the anomaly detector
would probably decide that Christmas had “broken” since traffic is less
than 25% of what would be predicted.

For situations such as this where substantial variations occur on top
of seasonality, we need to increase the complexity of our model. In this
example, the approach we chose was to build a standard linear model
in R using the glm function. We used logs of rates in our model because
it is more natural to think about relative changes in rate rather than
absolute changes. We set up our model to find the linear relationship
between predictors (lagged log of average rates in the training data)
and target variable (the log of current rate in the training data). We

44 | Chapter 5: Anomalies in Sporadic Events

built a training dataset with these target rates and predictors, as illus‐
trated in Figure 5-6.

Figure 5-6. Illustration of part of the training data for our traffic mod‐
el. The current rate for each hour is the target variable, and rates from
1, 2, 3, 24 and 48 hours earlier are the predictor variables. Note how
the value 681 appears as current and delayed values on successive
lines.

Using R, we estimated a formula that connects together the different
predictors and gives us an estimate of current rate:

where a, a1, a2, a3, a4, and a5 are the regression coefficients.

Figure 5-7 shows the results of our linear model that predicts traffic
based on lagged data to get an estimate. The model was trained on the
600 hours of traffic from November 22 until December 17 and then
applied to traffic after that period.

Extreme Seasonality Effects | 45

Figure 5-7. Traffic prediction in the face of extreme change in traffic
levels. The actual traffic is in black, and the predicted traffic is in gray.
Predictions are fairly accurate well into the extreme high-traffic period
and even after the post-Christmas collapse.

This more elaborate model produces very good predictions until the
night before Christmas and then under-predicts traffic by about 25%
on Christmas day. As traffic collapses the day after Christmas, the
model over-predicts traffic, which could lead to some malfunctioning
of the anomaly detector, but within a week, accuracy returns to prior
levels.

Even with this degradation in accuracy, if you decrease the amount of
history that the quantile estimator is allowed, the anomaly detector
functions well through the holiday season in spite of radical shifts in
traffic patterns. Note that one-year delayed data is not likely to help as
much because annual traffic patterns change due to how most holidays
fall on different days of the week each year.

The point here is that even during periods where traffic patterns
change radically, fairly straightforward traffic rate models can be suf‐
ficiently accurate to allow event-rate anomaly detectors to be built
using simple techniques. It may be that the inclusion of annual data
would improve these models a bit, but the models shown here provide
high enough accuracy to make that unnecessary.

46 | Chapter 5: Anomalies in Sporadic Events

CHAPTER 6

No Phishing Allowed!

One of the most important uses for anomaly detection is to identify
potentially fraudulent behavior and thus reduce risk of loss and im‐
prove security. The nefarious behaviors to be found could be credit
card fraud, identity theft, or phishing attacks on a secure website such
as an online banking site. It’s not only challenging to think of how to
create an effective model and alert system—it’s also a challenge to stay
one step (or even two) ahead of the fraudsters. As you find ways to foil
their attacks, they keep looking for new ways to commit theft. In this
situation, agility, cost-effective and practical approaches, and innova‐
tion are all required.

Let’s take a look at a method that lets a machine-learning model quickly
identify a hypothetical phishing attack on a bank site and flag it as
suspicious. This example will extend the concepts of a probabilistic
model that we have developed in previous chapters to situations that
involve sequences of events.

The Phishing Attack
The attack is based on luring bank customers to a fake website in order
to capture their private login details. The plan also includes having the
customer unknowingly type in the CAPTCHA security code for the
fraudsters that their fraud-bot script would not be able to do by itself
without human help. A description of how the fraud might be at‐
tempted is given here and summarized in Figure 6-1.

47

Step 1
A huge number of customers receive an automated email that
appears to be from the bank. The email presents some enticing
reason that the customer would want to click the link provided
that supposedly goes to the URL of the bank. A lot of people ignore
such messages, but some customers inevitably will believe the
email is genuine and click the link. What happens next?

Step 2
When an unsuspecting customer clicks the link, they reach what
looks very much like the familiar website of their own bank. Even
the images on the site are identical. The customer obligingly types
in their login ID and password and successfully works out the
always-hard-to-read CAPTCHA code word and types that in as
well.

Step 3
Now two things happen: the customer is redirected to a page with
an “oops” message screen indicating that they made an error typ‐
ing in their login details or CAPTCHA and asking them to click
to log in again. They do so. Meanwhile, the fraud-bot script has
been busily stealing the customer’s login information that was
originally typed into the fake-bank website.

Step 4
On their second attempt, the customer successfully logs into the
real bank site. They see that their funds are in place and feel secure.
But…

Step 5
…the fraud bot can use the captured login details to reach the
customer’s account and merrily withdraw all the money—a big
phish indeed.

48 | Chapter 6: No Phishing Allowed!

Figure 6-1. The steps in a phishing attack on an online banking site.
An email is used to lure a customer to the fake site that looks like an
online bank. When the customer attempts to log in, the fraud bot cap‐
tures the information and uses it to log in to the real site to transfer out
the funds. The user is meanwhile directed to the real login page, where
they can log in, unaware that their account has been compromised.

How can this fraud attack be detected quickly?

The No-Phishing-Allowed Anomaly Detector
The events in a login attempt are captured in web log histories. A good
anomaly detector can compare the normal pattern found in the web
logs to new and possibly anomalous behavior. The more traces of the
events that are left in web logs, the better. For this reason, it can be
helpful for the bank to include dynamic security elements that the user
must interpret, such as a CAPTCHA, plus image elements that are
downloaded.

A dynamic, probabilistic model of the data from the web logs can
distinguish the normal and anomalous patterns shown in Figure 6-2.
Notice that because the fraud-bot script is forced to use actual image
elements from the real bank site on the decoy site, there are in fact two
sets of image downloads, plus the two login events (human and bot),

The No-Phishing-Allowed Anomaly Detector | 49

on the same timeline. This is not a normal pattern, and the anomaly
detection model can quickly discover that.

Figure 6-2. The anomaly detection model identifies a potential phish‐
ing attack by identifying this anomalous pattern in events on a single
timeline for this account. There are two image downloads (events A
and B) and two login attempts (events C and D) from different IP ad‐
dresses along this same timeline.

The model detects the problem and can flag the site that has been hit
by suspicious behavior. At this point, human insight and intervention,
such as putting a hold on that customer account and notifying the
customer that there may have been an attack, is often required. If this
happens fast enough, the bot may not be able to steal the funds. That
need for rapid response is one reason that building the detector on a
system with a realtime file system is important.

How the Model Works
The key here is just like in the previous chapters in that a probabilistic
model has to be built that recognizes normal sequences of events. The
problem is that the sequences that actually occur are highly varied and
often are not recorded as happening quite the way that we might ex‐
pect. This unexpected result takes place for all kinds of reasons. For
instance, most web browsers will only download a limited number of

50 | Chapter 6: No Phishing Allowed!

images at the same time. Many browsers will reuse the same TCP
connection for many of the image downloads, leading to no overlap.
There can also be various forms of caching or load balancing that affect
the data we see in the logs. The point is that these differences provide
a barrier to building an accurate description manually. What you need
is to build a system to read logs and automatically build the model
based on what actually happens, not necessarily based on what you
would expect to be the case.

By examining the timelines of many user sessions, the actual patterns
of events as represented in the logs can be used to train a model that
assigns high probability to event sequences similar to those found in
the logs and low probability to sequences that are very different.

One common way to build such a model is to first group all log file
events into sessions by browser cookie. Each cookie session is then
associated with the user id in any login events in the session. All ses‐
sions that reference the same user id are then grouped. This gives a
timeline similar to what we saw in Figure 6-2. At this point, all con‐
secutive event pairs in timelines are counted, and the time between
events is recorded. These event pairs and times are used to construct
a model of plausible event sequences, which in turn gives probabilities
for timelines. See the code at https://github.com/tdunning/sequence-
model for an example of a simple event sequence model.

The log of this probability is an anomaly score just like the anomaly
scores that we saw previously in Chapters 4 and 5 for rate or level
anomaly detection. This anomaly score can be thresholded using the
same adaptive methods using t-digest as described previously.

Putting It All Together
This example of using an anomaly detector to recognize and flag
phishing attacks is not only important in its own right as a valuable
application of practical machine learning, but it also shows the cul‐
mination of all the techniques we have discussed.

The common theme of all these anomaly detectors is that they use a
probabilistic model of the data from the past. The log of the probability
value that is produced by these models can be used to automatically
set a threshold that, when exceeded, sets off an alarm.

The situations that you find yourself in are likely to deviate from the
exact patterns that we have described here. The fundamental principle

Putting It All Together | 51

https://github.com/tdunning/sequence-model
https://github.com/tdunning/sequence-model

of using a probabilistic model to produce a log probability should ap‐
ply to your situation as well as it has applied to these examples. What‐
ever your results are, we would love to hear about them.

52 | Chapter 6: No Phishing Allowed!

CHAPTER 7

Anomaly Detection for the Future

The present is an exciting time for those who are interested in machine
learning. The surge of interest in extracting value from growing data
sets at large scale has opened up the field for new applications of basic
and novel techniques, as well as opened the job market in order to fill
the sudden new demand for data scientists and developers experienced
with machine learning. The rapid expansion of the use of machine
learning in mainstream business operations also means there is in‐
creasing importance in designing new, practical approaches that are
both approachable and very effective.

These changes also raise the stakes for being able to effectively com‐
municate about these highly technical topics between teams with very
different areas of knowledge. This need underlines the usefulness of
learning the fundamental concepts and basic approaches to machine
learning in order to discuss them in a comprehensible way with deci‐
sion makers for business solutions, individuals possessing domain
knowledge relevant to your project, technical practitioners who more
often think in terms of math and code, and newcomers to data science.
You must develop the habit of being able to speak of fundamental
concepts and methods, using clear and widely understood terms, in
order to foster excellent exchanges between these different groups.

With these goals in mind, we also want to look toward the future. Our
prediction is that anomaly detection is certainly going to become
much more widespread as a basic operation in many aspects of any
business or large organization. This increased use of anomaly detec‐
tion should be especially apparent in the area of interconnected sen‐
sors—the Internet of Things that is likely to grow beyond communi‐

53

cation with objects to whole system communications, such as manu‐
facturing or warehousing systems, utility grids, weather-related com‐
munications with a variety of other systems including farm equipment
or transportation, and so on. As sensors report back to humans or
between machines on these complex systems, it will become essential
to accurately model expected behavior using approaches that are rea‐
sonable to develop and maintain in practical settings. And in addition
to understanding expected behavior, it will be important to recognize
deviations in a timely manner. That’s where anomaly detection comes
in. Better data modeling, better compression, storage and access of
data, and better training for those who use the data will be the key to
making these new systems successful.

In this short publication, we have shown that anomaly detection can
be much more than an alarm reacting to a static threshold. These sys‐
tems can be smart and adaptive. At the same time, we’ve tried to pro‐
vide you with the stepping-off points for several simple yet powerful
approaches to make anomaly detection practical. As with our previous
topic in Practical Machine Learning, we are not only providing com‐
mon ground for expressing complicated ideas, we also are recom‐
mending specific approaches that make machine learning accessible
and manageable. These approaches take into account real business
goals and realistic limitations on resources and consider the benefit of
easy and rapid development of machine-learning applications.

In summary, please keep in mind that effective anomaly detection is
based on the fundamental concept of modeling what is normal in order
to discover what is not. The most effective way to do this is to start
with adaptive probabilistic models. One of the very useful practical
innovations we have offered you is the freely available algorithm
known as t-digest, which can be used to accurately measure extreme
quantiles and can be applied to both simple and complex models in
order to determine appropriate thresholds for anomaly alerts. We dis‐
cussed the trade-off between sensitive detection of outliers without
being overwhelmed by false positives as you do this.

The examples we described graduated from simple noise around a
fairly constant value (Chapter 3) to a complex yet repeating pattern
for a continuous value (Chapter 4). For an example of the latter, such
as an EKG, anomaly detection is accomplished by building a model to
predict a normal pattern for a complex curve, making a comparison
between that predicted curve (reconstruction curve) and observed
measurements in order to determine the reconstruction error. Big

54 | Chapter 7: Anomaly Detection for the Future

http://www.oreilly.com/data/free/machinelearning.csp
http://www.oreilly.com/data/free/machinelearning.csp

spikes in the reconstruction error flag potential anomalies. Similar
approaches that use a reconstruction curve and examine reconstruc‐
tion error to flag anomalies but that employ different techniques to
build the model are useful for systems with many measurements at a
given time.

Detecting anomalies in systems with sporadic events, such as website
traffic, poses a new challenge because counting-based approaches are
often not very effective. In Chapter 5, we described systems with
sporadic events and explained that the key aspect of the data that is
useful to build a model is the arrival time of each event. A good way
to measure anomalies in these systems is to multiply the rate you pre‐
dict for events by the time since the previous event (or nth previous
event). This product can be used in an analogous way to the use of
error calculations from the reconstruction model in the EKG example
in Chapter 4.

In Chapter 6 we provide an example that combines many of these
concepts in the form of anomaly detection to discover phishing attacks
on a secure website.

There is no single way to build an anomaly detector. The choices de‐
pend very much on the nature of the system and the need of the ar‐
chitect to accomplish specific goals. But the concepts described here
should be helpful in setting you up to tackle your own project as you
go in search of the things you don’t know to look for.

What remains is for you to decide which mystery you plan to solve…

Anomaly Detection for the Future | 55

APPENDIX A

Additional Resources

GitHub
For the code mentioned in this publication:
Code for t-digest

https://github.com/tdunning/t-digest

EKG anomaly detection example
https://github.com/tdunning/anomaly-detection

Simple event sequence model example
https://github.com/tdunning/sequencemodel

Apache Mahout Open Source Project
The clustering algorithm mentioned in this publication is from
Apache Mahout.

For more information on the Apache Mahout project for scalable ma‐
chine learning, please visit the Mahout website. This project welcomes
participation. Please feel free to subscribe to the user or developer
mailing lists, check the mail archives to see discussions, and follow the
community on Twitter at @ApacheMahout.

57

https://github.com/tdunning/t-digest
https://github.com/tdunning/anomaly-detection
https://github.com/tdunning/sequencemodel
https://mahout.apache.org/
https://twitter.com/ApacheMahout

Additional Publications
To learn how to build a simple but powerful recommendation system,
please download Practical Machine Learning: Innovations in Recom‐
mendation, also written by Ted Dunning and Ellen Friedman.

58 | Appendix A: Additional Resources

http://www.oreilly.com/data/free/machinelearning.csp
http://www.oreilly.com/data/free/machinelearning.csp

About the Authors
Ted Dunning is Chief Applications Architect at MapR Technologies;
committer and PMC member of the Apache Mahout, Apache Zoo‐
Keeper, and Apache Drill projects; and mentor for these Apache
projects: Spark, Storm, Stratosphere, and Datafu. He contributed to
Mahout clustering, classification, and matrix decomposition algo‐
rithms and helped expand the new version of Mahout Math library.
Ted was the chief architect behind the MusicMatch (now Yahoo Music)
and Veoh recommendation systems, built fraud-detection systems for
ID Analytics (LifeLock), and has issued 24 patents to date. Ted has a
PhD in computing science from the University of Sheffield. When he’s
not doing data science, he plays guitar and mandolin. Ted is on Twitter
at @ted_dunning.

Ellen Friedman is a consultant and commentator, currently writing
mainly about big data topics. She is a committer for the Apache Ma‐
hout project and a contributor to the Apache Drill project. With a PhD
in Biochemistry, she has years of experience as a research scientist and
has written about a variety of technical topics including molecular
biology, nontraditional inheritance, and oceanography. Ellen is also
co-author of a book of magic-themed cartoons, A Rabbit Under the
Hat. Ellen is on Twitter at @Ellen_Friedman.

https://twitter.com/ted_dunning
https://twitter.com/ellen_friedman

	Copyright
	Table of Contents
	Chapter 1. Looking Toward the Future
	Chapter 2. The Shape of Anomaly Detection
	Finding “Normal”
	If you enjoy math, read this description of a probabilistic model of “normal”…

	Human Insight Helps
	Finding Anomalies
	Once again, if you like math, this description of anomalies is for you…
	Take-Home Lesson: Key Steps in Anomaly Detection

	A Simple Approach: Threshold Models

	Chapter 3. Using t-Digest for Threshold Automation
	The Philosophy Behind Setting the Threshold
	Using t-Digest for Accurate Calculation of Extreme Quantiles
	Issues with Simple Thresholds

	Chapter 4. More Complex, Adaptive Models
	Windows and Clusters
	Matches with the Windowed Reconstruction: Normal Function
	Mismatches with the Windowed Reconstruction: Anomalous Function
	A Powerful But Simple Technique
	Looking Toward Modeling More Problematic Inputs

	Chapter 5. Anomalies in Sporadic Events
	Counts Don’t Work Well
	Arrival Times Are the Key
	And Now with the Math…

	Event Rate in a Worked Example: Website Traffic Prediction
	Extreme Seasonality Effects

	Chapter 6. No Phishing Allowed!
	The Phishing Attack
	The No-Phishing-Allowed Anomaly Detector
	How the Model Works
	Putting It All Together

	Chapter 7. Anomaly Detection for the Future
	Appendix A. Additional Resources
	GitHub
	Apache Mahout Open Source Project
	Additional Publications

	About the Authors

